

Department of Applied Electronics & Instrumentation

COURSE HANDOUT : FIFTH SEMESTER

RSET VISION

To evolve into a premier technological and research institution, moulding eminent professionals with creative minds, innovative ideas and sound practical skill, and to shape a future where technology works for the enrichment of mankind.

RSET MISSION

To impart state-of-the-art knowledge to individuals in various technological disciplines and to inculcate in them a high degree of social consciousness and human values, thereby enabling them to face the challenges of life with courage and conviction.

DEPARTMENT VISION

To evolve into a centre of academic excellence, developing professionals in the field of electronics and instrumentation to excel in academia and industry.

DEPARTMENT MISSION

Facilitate comprehensive knowledge transfer with latest theoretical and practical concepts, developing good relationship with industrial, academic and research institutions thereby moulding competent professionals with social commitment.

PROGRAMME EDUCATIONAL OBJECTIVES

PEOI: Graduates will possess engineering skills, sound knowledge and professional attitude, in electronics and instrumentation to become competent engineers.

PEOII: Graduates will have confidence to design and develop instrument systems and to take up engineering challenges.

PEOIII: Graduates will possess commendable leadership qualities, will maintain the attitude to learn new things and will be capable to adapt themselves to industrial scenario.

PROGRAMME OUTCOMES

Engineering Graduates will be able to:

PO1. Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.

PO2. Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.

PO3. Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.

PO4. Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.

PO5. Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.

PO6. The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.

PO7. Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and nee for sustainable development.

PO8. Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.

PO9. Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

PO10. Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.

9

PO11. Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.

PO12. Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

Program Specific Outcome

Students of the program

PSO 1: will have sound technical skills in electronics and instrumentation.

PSO 2: will be capable of developing instrument systems and methods complying with standards.

PSO 3: will be able to learn new concepts, exhibit leadership qualities and adapt to changing industrial scenarios

		INDEX								
1.	ASSIGN	ASSIGNMENT SCHEDULE								
2.	SCHEME									
3.	AET301: CONTROL SYSTEMS									
	3.1.	COURSE INFORMATION SHEET								
	3.2.	COURSE PLAN								
	3.3.	ASSIGNMENT QUESTIONS								
	3.4.	TUTORIALS								
4.	AET303	: INDUSTRIAL INSTRUMENTATION								
	4.1.	COURSE INFORMATION SHEET								
	4.2.	COURSE PLAN								
	4.3.	ASSIGNMENT QUESTIONS								
	4.4.	TUTORIALS								
5.	AET305	: COMPUTER ARCHITECTURE AND EMBEDDED SYSTEMS								
	5.1.	COURSE INFORMATION SHEET								
	5.2.	COURSE PLAN								
	5.3.	ASSIGNMENT QUESTIONS								
	5.4. TUTORIALS									
6.	AET307	: ANALOG INTEGRATED CIRCUITS								
	6.1.	COURSE INFORMATION SHEET								
	6.2. COURSE PLAN									
	6.3.	ASSIGNMENT QUESTIONS								
	6.4. TUTORIALS									
7.	HUT300	: INDUSTRIAL ECONOMICS & FOREIGN TRADE								
	7.1. COURSE INFORMATION SHEET									
	7.2.	COURSE PLAN								
8.	MCN301	L:DISASTER MANAGEMENT								
	8.1.	COURSE INFORMATION SHEET								
	8.2.	COURSE PLAN								
	8.3. ASSIGNMENT QUESTIONS									
	8.4. TUTORIALS									
9	AEL331: ANALOG INTEGRATED CIRCUITS AND INSTRUMENTATION LAB									
	9.1.	COURSE INFORMATION SHEET								
	9.2.									
10	9.3.	ADDITIONAL QUESTIONS								
10.	AEL 333	COUDEE INFORMATION CHEFT								
	10.1.	LAD CYCLE								
	10.2.									
	10.3	ADDITIONAL QUESTIONS								

SCHEME

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
Α	AET301	CONTROL SYSTEMS	3-1-0	4	4
В	AET303	INDUSTRIAL INSTRUMENTATION	3-1-0	4	4
С	AET305	COMPUTER ARCHITECTURE AND EMBEDDED SYSTEMS	3-1-0	4	4
D	AET307	ANALOG INTEGRATED CIRCUITS	3-1-0	4	4
E	HUT300	INDUSTRIAL ECONOMICS & FOREIGN TRADE	3-0-0	3	3
1/2	HUT310	MANAGEMENT FOR ENGINEERS	3-0-0	3	3
F	MCN301	DISASTER MANAGEMENT	2-0-0	2	
S	AEL331	ANALOG INTEGRATED CIRCUITS AND	0-0-3	3	2
		INSTRUMENTATION LAB			
Т	AEL333	EMBEDDED SYSTEMS LAB	0-0-3	3	2
R/M/H	VAC	REMEDIAL/MINOR/HONOURS COURSE	3-1-0	4*	4
		TOTAL		27/31	23/27

AET301: CONTROL SYSTEMS

COURSE INFORMATION SHEET

PROGRAMME: APPLIED ELECTRONICS AND	DEGREE: BTECH
INSTRUMENTATION	
COURSE: CONTROL SYSTEM	SEMESTER: 5 CREDITS: 4
COURSE CODE: AET301	COURSE TYPE: CORE
REGULATION: 2019	
COURSE AREA/DOMAIN: SYSTEM THEROY	CONTACT HOURS: 3+1 (Tutorial)
	hours/Week.
CORRESPONDING LAB COURSE CODE (IF ANY):	LAB COURSE NAME: NIL
NIL	

SYLLABUS:

UNIT	DETAILS	HOURS
Ι	System modeling - Transfer function approach: Introduction to	9
	control systems – Classification of control systems. Principles of	
	automatic control. Feedback control systems – Practical examples –	
	Transfer function – Transfer function of electrical, mechanical and	
	electromechanical system – Block diagram – Signal flow graph – Mason s gain formula.	
II	Time domain analysis: Standard test signals - Response of systems to	10
	standard test signals – Step response of second order systems in detail –	
	Time domain specifications – delay time, rise time, peak time, maximum	
	percentage overshoot and settling time. Steady state response – Steady	
	state error- Static & Dynamic error coefficients.	
III	Stability of linear systems in time domain: Asymptotic and BIBO	8
	stability, Routh-Hurwitz criterion of stability. Root locus - Construction	
	of root locus – Effect of addition of poles and zeros on root locus.	
IV	Frequency domain analysis: Frequency response – Frequency domain	8
	specifications – Stability in the frequency domain- Nyquist stability	
	criterion – Stability from polar and Bode plots - Relative stability – Gain	
	margin and phase margin – M & N circles – Nichol's chart.	
V	State variable analysis: State space representation of Continuous Time	10
	systems. Transfer function from State Variable Representation, Solution	
	of state equations, state transition matrix, Concepts of Controllability	
	and Observability, Kalman's Test.	
	TOTAL HOURS	45

TEXT/REFERENCE BOOKS:

T/R	BOOK TITLE/AUTHORS/PUBLICATION
Т	S. Hassan Saeed, Automatic Control Systems(with MATLAB programs),KATSON
	Books.
Т	Norman S Nise, Control System Engineering, Sixth Edition.
R	Control systems principles and design: M. Gopal, TMH.
R	Automatic control system – B.C. Kuo, PHI.
R	Control system design: Graham C Goodwin, PHI.
R	Modern Control Systems: Dorf, Pearson Education.
R	Katsuhiko Ogata, Modern Control Engineering, Pearson Education.

COURSE PRE-REQUISITES:

C.CODE	COURSE NAME	DESCRIPTION	SEM
ECT205	NETWORK THEORY	Node and mesh analysis	3

COURSE OBJECTIVES:

	1	To analyze and design control systems
1		

COURSE OUTCOMES:

Sl. No.	DESCRIPTION	Bloom's Taxonomy Levels
1	Analyze the control systems by transfer function approach.	Analyze (4)
2	Get an adequate knowledge in the time response of systems &	Knowledge
	steady state error analysis	(1)
3	Learn the concept of stability of control systems and methods of	Understand
	stability analysis.	(2)
4	Analyze the control systems using frequency domain method.	Analyze (4)
5	Apply the State Space Techniques to Control Systems.	Apply (3)

CO-PO AND CO-PSO MAPPING

	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PSO1	PSO2	PSO3
CO.1	3	2	-	-	-	-	-	-	-	-	-	-	-	2	2
CO.2	3	2	-	-	-	-	-	-	-	-	-	-	-	-	3
CO.3	3	3	-	-	-	-	-	-	-	-	-	-	2	-	2
CO.4	2	3	2	-	-	-	-	-	-	-	-	-	-	3	2
CO.5	3	2	-	-	-	-	-	-	-	-	-	-	-	2	2

JUSTIFATIONS FOR CO-PO-PSO MAPPING

MAPPING	LOW/MEDIUM /HIGH	JUSTIFICATION
СО.1-РО1	Н	Knowledge of mathematical modeling for understanding complex
		control systems by finding their transfer function.
СО.1 – РО2	Н	Formulate transfer functions from mathematical model to
		understand control systems better.
CO.1 – PSO2	М	Knowledge of electrical and mechanical systems required for design
		of instrument systems.
CO.1 – PSO3	М	Learn new concepts about linear systems, their properties and
		models
<i>CO.2 – PO1</i>	М	Analysis of transfer function for finding solution to complex control
		systems
СО.2 – РО2	М	Analyze the different responses and steady state errors in control
		systems.
CO.2 – PSO3	М	New concepts in system analysis in time domain
<i>CO.3 – PO1</i>	Н	Analyze stability of systems using principles of mathematics.
СО.3 – РО2	М	Knowledge of analytical methods for stabilizing unstable systems.
<i>CO.3 – PSO1</i>	М	Better knowledge of instrument systems by knowing stability issues.
CO.3 – PSO3	М	New concepts in stability analysis
CO.4 – PO1	М	Analyze a given system and identify the additional requirement that
		can be met with a compensator.
СО.4 – РО2	Н	Design of compensators for meeting specific performance criteria.

DEPARTMENT OF APPLIED ELECTRONICS & INSTRUMENTATION

CO.4 – PO3	М	Conduct investigation of current system performance using					
		frequency domain analysis (Bode plot).					
<i>CO.4 – PSO2</i>	Н	Compensator design using RC networks and obtaining their					
		mathematical models.					
CO.4 – PSO3	М	Learning concept of compensators and their design.					
<i>CO.5 – PO1</i>	Н	Use of MATLAB for analysis of control systems.					
<i>CO.5 – PO2</i>	М	Imparting knowledge for making industry ready graduates that					
		enable lifelong learning.					
<i>CO.5 – PSO2</i>	М	Understanding of universal standard analysis tool like MATLAB					
<i>CO.5 – PSO3</i>	М	Learning of new analysis methods using MATLAB					

GAPES IN THE SYLLABUS - TO MEET INDUSTRY/PROFESSION REQUIREMENTS:

Sl.NO:	DESCRIPTION	PROPOSED
		ACTIONS
1	Introduction to Laplace Transforms	Assignment &
		Bridge Course
2	MATLAB in detail, Simulink	Web
		reference[3]

PROPOSED ACTIONS: TOPICS BEYOND SYLLABUS/ASSIGNMENT/INDUSTRY VISIT/GUEST LECTURER/NPTEL ETC

TOPICS BEYOND SYLLABUS/ADVANCED TOPICS/DESIGN:

Conceptual problems, definitions, to help students in competitive examinations.

WEB SOURCE REFERENCES:

1

1	http://nptel.iitm.ac.in/courses/108101037/
2	http://nptel.iitm.ac.in/video.php?subjectId=108102043
3	http://nptel.iitm.ac.in/courses/Webcourse-contents/IIT-
	Delhi/Control%20system%20design%20n%20principles/index.htm

DELIVERY/INSTRUCTIONAL METHODOLOGIES:

CHALK & TALK	STUD.	WEB RESOURCES	
	ASSIGNMENT		
□ LCD/SMART	□ STUD. SEMINARS	🗆 ADD-ON	
BOARDS		COURSES	

ASSESSMENT METHODOLOGIES-DIRECT

ASSIGNMENTS	□ STUD. SEMINARS	TESTS/MODEL	UNIV.
		EXAMS	EXAMINATION
□ STUD. LAB	🗆 STUD. VIVA	☐ MINI/MAJOR	□ CERTIFICATIONS
PRACTICES		PROJECTS	
□ ADD-ON	□ OTHERS		
COURSES			

ASSESSMENT METHODOLOGIES-INDIRECT

□ ASSESSMENT OF COURSE OUTCOMES (BY	□ STUDENT FEEDBACK ON FACULTY
FEEDBACK, ONCE)	(TWICE)
□ ASSESSMENT OF MINI/MAJOR PROJECTS	□ OTHERS
BY EXT. EXPERTS	

Prepared by

Ms.Mary Hexy

Approved by

Dr. Hari C.V.

(HOD)

COURSE PLAN

SI.No	Module	Planned
1	1	System modeling- Transfer function approach: Introduction to control
2	1	Classification of control systems
3	1	Principles of automatic control.
4	1	Stability from polar and Bode plots- Relative stability.
5	1	Feedback control systems
6	1	Practical examples- Transfer function
7	1	Transfer function of Electrical system
8	1	Transfer function of Mechanical, Electromechanical system
9	1	Block diagram
10	1	Signal flow graph- Mason's gain formula
11	1	Signal flow graph- Mason's gain formula
12	1	Signal flow graph- Mason's gain formula
13	2	Time domain analysis: Standard test signals.
14	2	Response of systems to standard test signals.
15	2	Step response of second order systems in detail.
16	2	Time domain specifications
17	2	Delay time, rise time, peak time, maximum percentage overshoot and settling time.
18	2	Steady state response- Steady state error
19	2	Static and Dynamic error coefficients.
20	2	Static and Dynamic error coefficients.
21	2	Static and Dynamic error coefficients. Tutorials
22	2	Tutorials
23	3	Stability of linear systems in time domain: Asymptotic and BIBO stability
24	3	Routh-Hurwitz criterion of stability
25	3	Root locus - Construction of root locus
26	3	Root locus - Construction of root locus

27	3	Effect of addition of poles and zeros on root locus
28	3	Effect of addition of poles and zeros on root locus
29	3	Effect of addition of poles and zeros on root locus
30	4	Frequency domain analysis: Frequency response
31	4	Frequency domain specifications
32	4	Stability in the frequency domain
33	4	Nyquist stability criterion
34	4	Nyquist stability criterion
35	4	Stability from polar and Bode plots - Relative stability
36	4	Stability from polar and Bode plots - Relative stability
37	4	Gain margin and phase margin
38	4	M & N circles
39	4	Nichol's chart.
40	5	State variable analysis: State space representation of Continuous Time systems.
41	5	Transfer function from State Variable Representation
42	5	Solution of state equations
43	5	state transition matrix
44	5	Concepts of Controllability and Observability, Kalman's Test.
45	5	Concepts of Controllability and Observability, Kalman's Test.
46	5	Revision Module
47	5	Revision Module

ASSIGNMENTS

ASSIGNMENT-1

- 1. Write any 2 advantages and disadvantages of closed-loop control systems.
- 2. Define the transfer function of a linear system. Write its properties.
- 3. Write any five standard classifications of the control system.
- 4. (a) Define system & subsystem(b) Define linear system with example.
- 5. Find the differential equation governing the electrical system as shown in the i. figure.

- 6. Write any 5 rules for block diagram reduction
- 7. Using the block diagram reduction technique, find the overall transfer function of the system shown below:

- 8. Derive the transfer function for armature-controlled DC motor.
- 9. Draw the free-body diagrams of masses M1 and M2, for the system shown below. Find the transfer function X2(s)/ F(s).

10. Find the transfer function G(s) = 2(s) / T(s), for the rotational mechanical system shown in the figure.

11. Derive the transfer function for armature-controlled DC motor.

ASSIGNMENT-2

- 1. Response of the first order
- 2. System to the unit step input
- 3. Response of the undamped second order system
- 4. Response of the underdamped second order system

Tutorial Questions

2.

PROBLEM: Reduce the system shown in Figure 5.11 to a single transfer function.

AET303: INDUSTRIAL INSTRUMENTATION

COURSE INFORMATION SHEET

PROGRAMME: APPLIED ELECTRONICS &	DEGREE: BTECH
INSTRUMENTATION	
COURSE: INDUSTRIAL	SEMESTER: 5 CREDITS: 4
INSTRUMENTATION	
COURSE CODE: AET303	COURSE TYPE: CORE
REGULATION: 2019	
COURSE AREA/DOMAIN:	CONTACT HOURS: 3+1(Tutorial)
SYSTEM THEORY	hours/Week.
CORRESPONDING LAB COURSE CODE (IF	LAB COURSE NAME: NIL
ANY): NIL	

SYLLABUS:

UNIT	DETAILS	HOURS
I	Temperature Measurement : Resistance Temperature Detectors – Applications, Industrial RTD construction requirement, RTD Transmitters. Thermistors – Principle of Operation, Sensor types,Temperature Measurement using Thermistors. Thermocouples – Theory of Operation, Thermocouple types. Diode – Type Temperature Sensors, Fluidic Sensors, Johnson noise thermometer, ElectronicTemperature Switches.	9
II	 Pressure Measurement: Manometers, Bourdon Tubes, Diaphragm Elements. Electronic Pressure Sensors – Strain Gauge Transducers, Capacitance Transducer, Potentiometric Transducer, Resonant Wire Transducer, Piezoelectric Pressure Sensors, Linear Variable Differential Transformer, Optical Transducers. Differential Pressure Transmitters – Pneumatic transmitter. 	9
III	 Flow Measurement: Introduction, Orifice Plates, Venturi Tubes and Nozzles, Pitot Tubes. Positive Displacement Flowmeters - Nutating disc flow meter, Sliding vane flow meter, Lobed impeller flow meter, Reciprocating piston flowmeter Mass Flowmeters - Radiation type, Angular - Momentum type, Impeller- Turbine Flowmeter, Constant torque - Hysteresis Clutch, Twin-Turbine. 	9
IV	Anemometers – Mechanical Anemometer, Hot-wire anemometer, Laser Doppler anemometer.Cross-Correlation flow meter, Ultrasonic flow meter – Transit-time flow meter, Doppler flow meter Measurement of Viscosity – Introduction, Viscometer selection and application. Capillary Viscometers – Differential Pressure type.	9
V	Electrical Methods – Resistance, Conductance, Inductive and Capacitive level gauging, Ultrasonic Method, Microwave Level Switches, Non	9

contacting optical level sensor, Rotating Paddle Switches.	
TOTAL HOURS	45

TEXT/REFERENCE BOOKS:

T/R	BOOK TITLE/AUTHORS/PUBLICATION
Т	Liptak B.G, "Process Measurement and Analysis", 4th Edition, Chilton Book Company,
	Radnor, Pennsylvania, 2003.
Т	Doebelin E.O, "Measurement Systems: Application and Design", 4th Edition, McGraw Hill,
	New York, 2003.
Т	Doebelin E.O, "Measurement Systems: Application and Design", 4th Edition, McGraw
	Hill,New York, 2003.
R	Andrew W.G, "Applied Instrumentation in Process Industries – A survey", Vol I & Vol II,
	Gulf Publishing Company, Houston, 2001.
R	Douglas M. Considine, "Process / Industrial Instruments & Controls Handbook", 5th
	Edition, McGraw Hill, Singapore, 1999.
R	Spitzer D. W., Flow measurement, ISA press, New York, 1998 4. Noltingk B.E.,
	"Instrumentation Reference Book", 2nd Edition, Butterworth Heinemann, 1995.
R	Noltingk B.E., "Instrumentation Reference Book", 2nd Edition, Butterworth
	Heinemann,1995.

COURSE PRE-REQUISITES:

C.CODE	COURSE NAME	DESCRIPTION	SEM
	NIL		

COURSE OBJECTIVES:

1

This course aims to develop a strong understanding of the principle of operation of various temperature, pressure, flow and level measuring devices.

COURSE OUTCOMES:

SNO	DESCRIPTION	Blooms' Taxonomy Level
1	Understand the working of different types of temperature sensors	Analyze (4)
2	Familiarize with the various types of pressure measurement	Knowledge (1)
	techniques	
3	Study the working of various flow measurement devices	Understand (2)
4	Familiarize with the working of anemometers and viscometers	Analyze (4)
5	Understand the various level measurement techniques	Apply (3)

CO - PO and CO - PSO mapping

CO	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PS01	PSO2	PSO3
1	3	3	-	-	-	-	-	-	-	-	-	-	-	-	2
2	3	3	-	-	-	-	-	-	-	-	-	-	-	-	2
3	3	3	-	-	-	-	-	-	-	-	-	-	-	-	2
4	3	3	-	-	-	-	-	-	-	-	-	-	-	-	2
5	3	3	-	-	-	-	-	-	-	-	-	-	-	-	2

Justification for CO-PO-PSO mapping

Course Outcome	LOW/MEDIU M/HIGH	Justification
СО.1-РО1	Н	Imparts good level knowledge in terms principle and application
		engineering
<i>CO.1 – PO2</i>	Н	Imparts good level knowledge in terms principle and application
		engineering
<i>CO.1 – PSO3</i>	М	Contains design aspects for design projects
<i>CO.2 – PO1</i>	М	Imparts good level knowledge in terms principle and application
		engineering
СО.2 – РО2	М	Imparts good level knowledge in terms principle and application
		engineering
<i>CO.3 – PO1</i>	Н	Contains mathematical modelling for analysis
<i>CO.3 – PO2</i>	М	Contains mathematical modelling for synthesis
<i>CO.3 – PSO3</i>	М	Deals with all fundamental measurements in industry
<i>CO.4 – PO1</i>	М	Imparts good level knowledge in terms application engineering
<i>CO.4 – PO2</i>	Н	Imparts good level knowledge in terms application engineering
<i>CO.4 – PSO3</i>	М	Interdisciplinary nature of the subject provokes diverse thinking
<i>CO.5 – PO1</i>	Н	Imparts good level knowledge in terms principle
<i>CO.5 – PO2</i>	М	Imparts good level knowledge in terms principle

GAPS IN THE SYLLABUS - TO MEET INDUSTRY/PROFESSION REQUIREMENTS:

SNO	DESCRIPTION	PROPOSED
		ACTIONS
1	Datasheet of DP transmitter	lectures

PROPOSED ACTIONS: TOPICS BEYOND SYLLABUS/ASSIGNMENT/INDUSTRY VISIT/GUEST LECTURER/NPTEL ETC

TOPICS BEYOND SYLLABUS/ADVANCED TOPICS/DESIGN:

SNO	DESCRIPTION
1	Introduction to current to pressure transducer

WEB SOURCE REFERENCES:

1	https://onlinecourses.nptel.ac.in/noc22_me08/preview
2	https://www.idc- online.com/technical_references/pdfs/instrumentation/Industrial_Instrumentation%20- %20Flow.pdf
3	http://www.nitttrc.edu.in/nptel/courses/video/103103147/lec28.pdf

DELIVERY/INSTRUCTIONAL METHODOLOGIES:

□CHALK & TALK 🛛	□STUD. ASSIGNMENT 🛛	□WEB	□LCD/SMART	
		RESOURCES	BOARDS	
□STUD. SEMINARS	□ADD-ON COURSES			

ASSESSMENT METHODOLOGIES-DIRECT

□ASSIGNMENTS 2	□STUD. SEMINARS	□TESTS/MODEL	□UNIV. EXAMINATION 2
		EXAMS 🛛	
□STUD. LAB	□STUD. VIVA	□MINI/MAJOR	□CERTIFICATIONS
PRACTICES		PROJECTS	
□ADD-ON COURSES	□OTHERS		

ASSESSMENT METHODOLOGIES-INDIRECT

□ASSESSMENT OF COURSE OUTCOMES (BY	□STUDENT FEEDBACK ON FACULTY (TWICE)
FEEDBACK, ONCE) 🛛	2
□ASSESSMENT OF MINI/MAJOR PROJECTS BY	□OTHERS
EXT. EXPERTS	

Prepared by	
Mr. Krishna kumar KP	
(Faculty)	

Approved by

Dr. Hari C.V. (HOD)

COURSE PLAN

Sl No	Module	Торіс
1	1	Temperature Measurement: Resistance Temperature Detectors
2	1	Applications, Industrial RTD construction requirement, RTD Transmitters
3	1	Thermistors – Principle of Operation, Sensor types
4	1	Temperature measurement using Thermistors
5	1	Thermocouples – Theory of Operation, Thermocouple types.
6	1	Diode – Type Temperature Sensors
7	1	Fluidic Sensors, Johnson noise thermometer
8	1	Electronic Temperature Switches.
9	2	Pressure Measurement: Manometers, Bourdon Tubes, Diaphragm Elements
10	2	Electronic Pressure Sensors – Strain Gauge Transducers
11	2	Capacitance Transducer, Potentiometric Transducer
12	2	Resonant Wire Transducer, Piezoelectric Pressure Sensors
13	2	Linear Variable Differential Transformer, Optical Transducers.
14	2	Differential Pressure Transmitters – Pneumatic transmitter.
15	3	Flow Measurement: Introduction, Orifice Plates
16	3	Venturi Tubes and Nozzles, Pitot Tubes
17	3	Positive Displacement Flowmeters - Nutating disc flowmeter, Sliding vane flowmeter
18	3	Lobed impeller flowmeter, Reciprocating piston flowmeter
19	3	Mass Flowmeters – Radiation type
20	3	Angular – Momentum type, Impeller-Turbine Flowmeter
21	3	Constant torque - Hysteresis Clutch, Twin-Turbine.
22	4	Anemometers – Mechanical Anemometer, Hot-wire anemometer, Laser Doppler anemometer
23	4	Cross-Correlation flow meter, Ultrasonic flow meter – Transit-time flow meter
24	4	Doppler flow meter
25	4	Measurement of Viscosity – Introduction, Viscometer selection and application
26	4	Capillary Viscometers – Differential Pressure type.
27	5	Level Measurement – Float Type level indicator
28	5	Displacer Type – Torque tube assembly
29	5	Electrical Methods – Resistance, Conductance
30	5	Inductive and Capacitive level gauging
31	5	Ultrasonic Method, Microwave Level Switches
32	5	Noncontacting optical level sensor
33	5	Rotating Paddle Switches.

Assignment 1

Q1) Submit class notes part1

Assignment 2

Q1) Submit class notes part2

AET 305: COMPUTER ARCHITECTURE AND EMBEDDED SYSTEMS

COURSE INFORMATION SHEET

PROGRAMME: Applied Electronics and	DEGREE: BTECH
Instrumentation Engg.	
COURSE: COMPUTER ARCHITECTURE	SEMESTER: 5 CREDITS: 4
AND EMBEDDED SYSTEMS	
COURSE CODE: AET305	COURSE TYPE: CORE
REGULATION: 2019	
COURSE AREA/DOMAIN: ELECTRONICS	CONTACT HOURS: 3+1 (Tutorial)
	hours/Week.
CORRESPONDING LAB COURSE CODE (IF	LAB COURSE NAME: EMBEDDED SYSTEMS
ANY): AEL333	LAB

SYLLABUS:

UNIT	DETAILS	HOURS
Ι	Computer Arithmetic and Processor Basics: Functional units of a computer, Von Neumann and Harvard computer architectures. Processing unit- Fundamental concepts, Execution of a complete Instruction, Hardwired Control, Multiple Bus organization, other enhancements, Microprogrammed control. Number representations - Fixed and floating point-number representation, Arithmetic operations on floating point numbers	11
II	8051 Architecture: Microcontrollers and Embedded Processors. Architecture – Block diagram of 8051, Pin configuration, Registers, Internal Memory, Timers, Port Structures, Interrupts. Assembly Language Programming - Addressing Modes, Instruction set of 8051, Simple programming examples in assembly language.	9
III	Programming and Interfacing of 8051: Interfacing with 8051 using Assembly language programming: LED, Seven segment LED display Interfacing of Keyboard, Stepper Motor and DAC with 8051 and its programming. 8051 Timers/Counters - Modes and Applications	10
IV	Embedded programming: Introduction to Embedded Systems: Definition of Embedded System, Embedded Systems Vs General Computing Systems. Programming concepts of Embedded programming in C Program Elements, Macros and functions - Use of Pointers - NULL Pointers - Use of Function Calls – Multiple function calls in a Cyclic Order in the Main Function Pointers – Function Queues and Interrupt Service Routines Queues Pointers	9
V	RTOS Based Embedded System: RTOS Based Embedded System Design: Operating System Basics, Types of Operating Systems, Tasks, Process and Threads, Multiprocessing and Multitasking, Task Scheduling. How to Choose an RTOS?	6
	TOTAL HOURS	45

TEXT/REFERENCE BOOKS:

T/R	BOOK TITLE/AUTHORS/PUBLICATION
Т	V. Carl Hamacher, Zvono G. Vranesic, Safwat G. Zaky, Computer Organization. McGraw-Hill International Editions
Т	Muhammad Ali Mazidi, ARM Assembly Language Programming & Architecture, Kindle edition
Т	Shibu K.V, Introduction to Embedded Systems, Mc Graw Hill
R	Computer organization and design: The Hardware/Software interface/David A.Patterson, John L. Hennessy. — 5th ed.
R	Mano M M, Computer System Architecture, 3rd Ed, Prentice Hall of India.
R	Wayne Wolf, Computers as Components: Principles of Embedded Computing System Design – Harcourt India, Morgan Kaufman Publishers, First Indian Reprint 2001
R	Lyla B Das, Embedded Systems An Integrated Approach, Pearson, 2013
R	Rajkamal, Embedded Systems Architecture, Programming and Design, TATA McGrawHill, First reprint Oct. 2003

COURSE PRE-REQUISITES:

C.CODE	COURSE NAME	DESCRIPTION	SEM
ECT203	Logic Circuit Design	To impart the basic knowledge of logic circuits and enables students to apply it to design a digital system.	3
<i>EST102</i>	EST102 Programming in C	Preparing the Engineering Graduates capable of writing readable C programs to solve computational problems that they may have to solve in their professional life.	2

COURSE OBJECTIVES:

1 To impart knowledge of basic computer architecture, 8051 microcontroller and embedded To expose programming.

COURSE OUTCOMES:

SNO	DESCRIPTION	Blooms'
		Taxonomy
		Level
1	Students will be able to explain the processor architecture and operation.	Understand (Level 2)
2	Students will be able to explain the architecture of 8051 microcontroller.	Understand
		(Level 2)
3	Students will be able to develop programs using assembly language 8051.	Apply
		(Level 3)
4	Students will be able to develop programming concepts of Embedded	Apply
	programming in C.	(Level 3)
5	Students will be able to explain the concepts of RTOS based embedded	Understand

	2)
LEVEL	4 J

system. CO-PO AND CO-PSO MAPPING

	P01	P02	PO3	P04	P05	P06	P07	P08	P09	P010	P011	P012	PS01	PSO2	PSO3
CO.1	3	3	-	-	-	-	-	-	-	-	-	3	2	-	1
CO.2	3	3	-	-	-	-	-	-	-	-	-	3	2	-	1
CO.3	3	3	3	3	3	-	-	-	-	-	-	3	2	-	1
CO.4	3	3	3	3	3	-	-	-	-	-	-	3	2	-	2
CO.5	3	3	-	-	-	-	-	-	-	-	-	3	2	-	2
CO.6	3	3	-	-	-	-	-	-	-	-	-	3	2	-	1

JUSTIFATIONS FOR CO-PO-PSO MAPPING

MAPPING	LOW/MEDIUM/	JUSTIFICATION			
	HIGH				
СО.1-РО1	Н	Understand the fundamentals, capabilities, programming model			
		and implementation of a computer system.			
СО.1-РО2	Н	Formulate the execution of computer instruction at the micro			
		level.			
<i>CO.1- PO12</i>	H	Lifelong learning enables to keep up with society's changes			
		especially the technological ones.			
<i>CO.1 – PSO1</i>	M	Provide sound technical knowledge in digital electronics.			
<i>CO.1 – PSO3</i>	L	Able to learn the data flow, memory hierarchy, hardware			
		requirements/costs, software-hardware trade-offs.			
<i>CO.2- PO1</i>	H	Understand the architecture, data types, addressing modes and			
		instruction set of 8051 microcontroller.			
<i>CO.2 – PO2</i>	H	Able to formulate programs using 8051 instruction set.			
<i>CO.2 – PO12</i>	Н	Lifelong learning helps to adapt more easily to changes.			
<i>CO.2 – PSO1</i>	M	Understanding of the programs will be useful in the development			
		of a new system.			
<i>CO.2 – PSO3</i>	L	Enable to learn programming concepts and adapt to changing			
		industrial scenarios.			
<i>CO.3- PO1</i>	H	Understand the basic assembly language programming and			
<u> </u>		design various interfacing circuits using 8051 microcontroller.			
CO.3 - PO2	H	Identifying the technique involved in various 8051 interfacing.			
<i>CO.3 – PO3</i>	H	Able to design assembly language programs for interfacing			
<u> </u>	TT	various circuits with 8051 microcontroller.			
<i>CO.3 – PO4</i>	H	Able to design and analyze various 8051 interfacing			
	TT.	experiments.			
<i>CO.3 - PO5</i>	Н	Understands the usage of modern tools for the simulation of			
CO 2 DO12	TT.	8051 experiments.			
0.3 - P012	Н	Helps to develop life-long learning skills such as investigating			
		and identifying problems, independent research,			
CO 2 DSO1	М	Able to interface bardware and software systems			
$CO_{2} = P_{3}O_{1}$	IVI	Able to loarn accombly language programming concents			
CO.3 - P303	L	Able to learn assembly language programming concepts.			

COURSE HANDOUT: S5

DEPARTMENT OF APPLIED ELECTRONICS & INSTRUMENTATION

<i>CO.4- PO1</i>	Н	Understands concepts of embedded systems and processor			
		design.			
CO.4 – PO2	Н	Analyze the design, development and implementation of			
		software that is programmed into devices built around a			
		microprocessor.			
СО.4-РОЗ	Н	Design the solutions of complex engineering problem with the			
		knowledge of programming and hardware components.			
CO.4- PO4	Н	Able to design and analyze embedded systems using embedded C			
		programming.			
CO.4- PO5	Н	Use latest tools for doing the simulations of different types of			
		embedded systems.			
<i>CO.4- PO12</i>	Н	Lifelong learning is needed to cope up with the emerging trends			
		in embedded systems that are being adopted.			
<i>CO.4 – PSO1</i>	М	Analyze and understand the designing of different embedded			
		systems.			
CO.4 – PSO3	М	Able to learn embedded C programming concepts and adapt to			
		changing industrial scenarios.			
CO.5- PO1	Н	Understands the concepts RTOS based embedded systems.			
<i>CO.5 – PO2</i>	Н	Identify the maximum utilization of devices and systems with			
		less memory usage.			
<i>CO.5 – PO12</i>	Н	Knowledge about the real time operating system will aid in			
		proving substantiated solutions to the widely increasing			
		demands of the industries.			
CO.5 – PSO1	М	Enable to provide solutions to real time applications.			
CO.5 – PSO3	М	Able to understand real time operating system concepts.			

GAPS IN THE SYLLABUS - TO MEET INDUSTRY/PROFESSION REQUIREMENTS:

SNO	DESCRIPTION	PROPOSED ACTIONS	RELEVANCE WITH POS	RELEVA NCE WITH PSOs
1	Familiarization of Microprocessors	Lecture notes and NPTEL Videos are provided. https://www.digimat.in/nptel/courses/vi deo/108105102/L07.html	P01	PSO1, PSO3
2	Interfacing of LCD with 8051 and its programming	Extra lab experiments.	PO4, PO6	PSO1, PSO3

PROPOSED ACTIONS: TOPICS BEYOND SYLLABUS/ASSIGNMENT/INDUSTRY VISIT/GUEST LECTURER/NPTEL ETC

TOPICS BEYOND SYLLABUS/ADVANCED TOPICS/DESIGN:

SNO	DESCRIPTION	PROPOSED ACTIONS	RELEVANCE WITH POs	RELEVANCE WITH PSOs
1	ARM	NPTEL Video	P01	PSO1,
	Microcontroller	https://nptel.ac.in/courses/117/106/117106111/	PUI	PSO3

WEB SOURCE REFERENCES:

1	https://nptel.ac.in/courses/108/105/108105102/
2	https://nptel.ac.in/courses/106/105/106105229/
3	https://nptel.ac.in/courses/106/105/106105172/
4	https://www.watelectronics.com/8051-microcontroller-architecture/
5	Microchip semiconductor web site – <u>www.microchip.com</u>
6	www.embeddedcraft.org
7	www.technologystudent.com

DELIVERY/INSTRUCTIONAL METHODOLOGIES:

🗆 CHALK & TALK	🗆 CHALK & TALK 🛛 STUD.		
	ASSIGNMENT		
□ LCD/SMART	🗆 STUD. SEMINARS	🗆 ADD-ON	
BOARDS		COURSES	

ASSESSMENT METHODOLOGIES-DIRECT

□ ASSIGNMENTS	□ STUD. SEMINARS	TESTS/MODEL	🗆 UNIV. EXAMINATION
		EXAMS	
🗆 STUD. LAB	🗆 STUD. VIVA	□ MINI/MAJOR	CERTIFICATIONS
PRACTICES		PROJECTS	
🗆 ADD-ON	□ OTHERS		
COURSES			

ASSESSMENT METHODOLOGIES-INDIRECT

□ ASSESSMENT OF COURSE OUTCOMES (BY	□ STUDENT FEEDBACK ON FACULTY (TWICE)
FEEDBACK, ONCE)	
□ ASSESSMENT OF MINI/MAJOR PROJECTS BY	□ OTHERS
EXT. EXPERTS	

Prepared by Ms. Remya K.R. (Faculty) Approved by Dr.Hari C.V. (HOD)

Course Plan

Sl No	Module	Topics Planned
1	1	Computer Arithmetic and Processor Basics:
1		Functional units of a computer
2	1	Von Neumann and Harvard computer architectures
3	1	Processing unit- Fundamental concepts
4	1	Execution of a complete Instruction
5	1	Hardwired Control
6	1	Multiple Bus organization, Other enhancements
7	1	Microprogrammed control
Q	1	Number representations - Fixed and floating point-
0		number representation
9	1	Tutorial: Execution of a complete instruction
10	1	Arithmetic operations on floating point numbers
11	2	8051 Pin configuration, Registers
12	2	8051 Internal Memory
13	2	8051 Architecture: Microcontrollers and Embedded
10		processors
14	2	Timers
15	2	port structures
16	2	Block diagram of 8051, Interrupts
17	2	Tutorial: Module I practice test
18	2	Assembly Language programming: Addressing
10	2	modes
19	2	Simple programming examples in essembly
20		Simple programming examples in assembly
21	2	Tutorial: Assembly language programming
<u> </u>	-	
22	3	Programming and Interfacing of 8051: LED
22	3	Seven segment LED display interfacing with 8051
23	3	Interfacing of Keyboard with 8051 microcontroller
24	3	Interfacing of Keyboard with 8051 microcontroller
25	5	and its programming
26	3	Interfacing of DAC with 8051 microcontroller
	3	Interfacing of Stepper Motor with 8051
27		microcontroller
28	3	Interfacing of stepper motor with 8051
		microcontroller
29	3	8051 Timers/Counters - Modes
30	3	8051 Timers/Counters - Modes and Applications

	4	Definition of Embodded Creatorn Embodded Creatorne
31	4	Definition of Embedded System, Embedded Systems
		Vs General Computing Systems.
32	4	Programming concepts of Embedded programming
		in C Program Elements
22	1	Magnag and functions
33	4	Macros and functions
34	4	Use of Pointers - NULL Pointers
35	4	Use of Data Structures
37	4	Use of Function calls
38	4	Multiple function calls in a Cyclic Order
39	4	Function queues and Function Queues
40	3	Tutorial: Interfacing of peripherals with 8051
		microcontroller
41	4	Interrupt Service Routines Queues Pointers
42	5	Tasks
	5	Operating System Basics Types of Operating
43	5	Systems
		Systems
44	5	Process and Threads
45	5	Difference between process and thread
46	5	Multiprocessing and Multitasking
47	5	Task Scheduling.
48	5	How to Choose an RTOS

Assignment questions

ASSIGNMENT – 1

1. Write the sequence of elementary operations requires to execute the following instructions

a) Sub (R4), R3

b) Add (R4), R1

2. Prepare the microroutine for Question No:1

3. Represent -126 using IEEE 754 floating point standard with double precision.

4. Multiply the following floating point numbers 10.01110 x 2-1 by 1.011010 x 2-4 and represent the result in single precision IEEE format.

5. Explain the execution of the instruction MUL R2, R3, R5 using a 3 bus structure with a neat diagram.

6. Write a program to find the sum of the values at RAM locations 50H – 54H (5 values). At the end of the program, register A should contain the lower byte of the sum and R7 the higher byte of the sum.

7. Is "DIV A, R1" a valid instruction? Justify your answer

8. The following shows the crystal frequency for three different 8051 based systems. Find the time required to execute 1 machine cycle.

a. 11.0592MHz

b. 16MHz

c. 20MHz

9. Explain the working of the following instructions with suitable example.

a) MOVX b) XCHD c) AJMP d) SWAP e) DAA

10. Explain about the port structures of 8051 microcontroller.

ASSIGNMENT – 2

1. Write an embedded C program to interface seven segment display with 8051 microcontroller. Also perform the simulation using PROTEUS software. Assume XTAL frequency is 11.0592 MHz.

2. Write an embedded C program to interface stepper motor with 8051 microcontroller. Also perform the simulation using PROTEUS software. Assume XTAL frequency is 11.0592 MHz.

3. Write a program to generate a square wave of 10 Hz frequency on pin P1.0 of 8051 microcontroller with 50% duty cycle (Ton = Toff). Assume XTAL frequency is 11.0592 MHz.
Tutorial

AET 305 COMPUTER ARCHITECTURE AND EMBEDDED SYSTEMS

QUIZ QUESTIONS

- 2. Write a program to generate a sinusoidal wave Vout = $3 + 3 \sin\theta$ using DAC 0808.
- 3. Write a program to generate a sinusoidal wave Vout = $4 + 4 \sin\theta$ using DAC 0808.
- 4. Write a program to generate a sinusoidal wave Vout = $1 + \sin\theta$ using DAC 0808.
- 5. Write a program to generate a sinusoidal wave Vout = $6 + 6 \sin\theta$ using DAC 0808.
- 6. Write a program to generate a sinusoidal wave Vout = $7 + 7 \sin\theta$ using DAC 0808.
- 7. Write a program to generate a sinusoidal wave Vout = $8 + 8 \sin\theta$ using DAC 0808.
- 8. Write a program to generate a sinusoidal wave Vout = $8 + 8 \sin\theta$ using DAC 0808.
- 9. Write a program to generate a sinusoidal wave Vout = $9 + 9 \sin\theta$ using DAC 0808.
- 10. Write a program to generate a sinusoidal wave Vout = $10 + 10 \sin\theta$ using DAC 0808.

11. Write a program to generate the following waveform using DAC 0808.

12. Write a program to generate the following waveform using DAC 0808.

- 13. Write a program to rotate stepper motor in clockwise direction with 2ms delay in wave drive mode using rotate instruction
- 14. Write a program to rotate stepper motor in anticlockwise direction with 3ms delay in wave drive mode using rotate instruction
- 15. Write a program to rotate stepper motor in clockwise direction with 4ms delay in wave drive mode using rotate instruction
- 16. Write a program to rotate stepper motor in anticlockwise direction with 6ms delay in wave drive mode using rotate instruction
- 17. Write a program to rotate stepper motor in clockwise direction with 7ms delay in wave drive mode using rotate instruction
- 18. Write a program to rotate stepper motor in clockwise direction with 8ms delay in wave drive mode using rotate instruction
- 19. Write a program to rotate stepper motor in clockwise direction with 9ms delay in wave drive mode using rotate instruction
- 20. Write a program to rotate stepper motor in 54⁰ anticlockwise direction with a step angle of 4⁰
- 21. Write a program to rotate stepper motor in 76^o anticlockwise direction with a step angle of 4^o
- 22. Write a program to rotate stepper motor in 150^o clockwise direction and 480^o anticlockwise direction
- 23. Write a program to rotate stepper motor in 180^o clockwise direction and 540^o anticlockwise direction
- 24. Write a program to rotate stepper motor in 60^o clockwise direction and 480^o anticlockwise direction
- 25. Write a program to rotate stepper motor in 210^o clockwise direction and 390^o anticlockwise direction
- 26. Write a program to rotate stepper motor in 54⁰ anticlockwise direction with a step angle of 2⁰
- 27. Write a program to rotate stepper motor in 150° anticlockwise direction with a step angle of 3°
- 28. Write a program to rotate stepper motor in 180^o clockwise direction and 380^o anticlockwise direction

- 29. Write a program to rotate stepper motor in 280^o clockwise direction and 390^o clockwise direction
- 30. Write a program to rotate stepper motor in 480^o clockwise direction and 220^o clockwise direction
- 31. write a program to interface seven segment display to display digits 0,2,4,6,8,0,2,4,....with 8051 microcontroller. Assume XTAL = 11.0592 MHz.
- 32. Write a program to interface seven segment display to display digits 1,3,5,7,9,1,3,with 8051 microcontroller. Assume XTAL = 11.0592 MHz.
- 33. Write a program to interface seven segment display to display digits 0,1,2,3,4,0,1,2,with 8051 microcontroller. Assume XTAL = 11.0592 MHz.
- 34. Write a program to interface seven segment display to display digits 0,2,5,7,9,0,2,5,7,with 8051 microcontroller. Assume XTAL = 11.0592 MHz.
- 35. Write a program to interface seven segment display to display digits 1,2,8,7,9,1,2,8,7,....with 8051 microcontroller. Assume XTAL = 11.0592 MHz.
- 36. Write a program to interface seven segment display to display digits 4,5,6,7,4,5,6,7,....with 8051 microcontroller. Assume XTAL = 11.0592 MHz.
- 37. Write a program to interface seven segment display to display digits 1,2,6,7,1,2,6,7,....with 8051 microcontroller. Assume XTAL = 11.0592 MHz.
- 38. Write a program to interface seven segment display to display digits 0,4,7,9,0,4,7,9,....with 8051 microcontroller. Assume XTAL = 11.0592 MHz.
- 39. Write a program to interface seven segment display to display digits 9,8,7,6,5,9,8,7,6,....with 8051 microcontroller. Assume XTAL = 11.0592 MHz.
- 40. Write a program to interface seven segment display to display digits 0,1,8,7,6,5,0,1,8,7,6,5,....with 8051 microcontroller. Assume XTAL = 11.0592 MHz.
- 41. Write a program to generate a square wave of 60 Hz frequency on pin P1.0 with 50% duty cycle (Ton = Toff). Assume XTAL = 11.0592 MHz
- 42. Write a program to generate a square wave on pin P1.0 with T_{ON} = 5mS and T_{OFF} = 3ms. Assume XTAL = 11.0592 MHz
- 43. Generate a square wave with an ON time of 3ms and an OFF time of 10ms on all pins of P0. XTAL =16MHz. Select timer 0, mode 1 operation.

- 44. Generate a square wave with an ON time of 7ms and an OFF time of 12ms on all pins of P0. XTAL =16MHz. Select timer 0, mode 0 operation.
- 45. Write a program to blink a LED which is connected to P3.1 with 1ms delay. Select timer 0, mode 1 operation
- 46. Write a program to blink a LED which is connected to P3.1 with 2ms delay. Select timer 0, mode 1 operation
- 47. Write a program to blink a LED which is connected to P3.1 with 3ms delay. Select timer 0, mode 1 operation
- 48. Write a program to blink a LED which is connected to P3.1 with 4ms delay. Select timer 0, mode 1 operation
- 49. Write a program to blink a LED which is connected to P3.1 with 7ms delay. Select timer 0, mode 1 operation
- 50. Write a program to blink a LED which is connected to P3.1 with 6ms delay. Select timer 0, mode 1 operation
- 51. Write a program to blink a LED which is connected to P2.2 with 8ms delay. Select timer 0, mode 1 operation
- 52. Write a program to blink a LED in P2.3 with 15ms delay. Select timer 0, mode 1 operation
- 53. Write a program to blink a LED which is connected to P3.1 with 1ms delay. Select timer 0, mode 0 operation
- 54. Write a program to blink a LED which is connected to P3.1 with 2ms delay. Select timer 0, mode 0 operation
- 55. Write a program to blink a LED which is connected to P3.1 with 3ms delay. Select timer 0, mode 0 operation
- 56. Write a program to blink a LED which is connected to P3.1 with 4ms delay. Select timer 0, mode 0 operation
- 57. Write a program to blink a LED which is connected to P3.1 with 7ms delay. Select timer 0, mode 0 operation
- 58. Write a program to blink a LED which is connected to P3.1 with 6ms delay. Select timer 0, mode 0 operation

AET 307: ANALOG INTEGRATED CIRCUITS

COURSE INFORMATION SHEET

PROGRAMME: APPLIED ELECTRONICS &	DEGREE: BTECH
INSTRUMENTATION	
COURSE: ANALOG INTEGRATED CIRCUITS	SEMESTER: 5 CREDITS: 4
COURSE CODE: AET 307	COURSE TYPE: CORE
REGULATION: 2019	
COURSE AREA/DOMAIN:	CONTACT HOURS: 3+1 (Tutorial) Hours/Week.
ELECTRONICS	
CORRESPONDING LAB COURSE CODE (IF	LAB COURSE NAME:
ANY): AEL331	ANALOG INTEGRATED CIRCUITS &
	INSTRUMENTATION LAB

SYLLABUS:

UNIT	DETAILS	HOURS
Ι	 Operational amplifiers (Op Amps): The 741 Op Amp, Block diagram, Ideal op-amp parameters, typical parameter values for 741, Equivalent circuit, Open loop configurations, Voltage transfer curve, Frequency response curve. Differential Amplifiers: Differential amplifier configurations-Dual input Balanced Output, Dual input Unbalanced Output, Single input Balanced Output, Single input Unbalanced Output- using BJT, Basic Differential pair using BJT- DC Analysis- transfer characteristics; AC analysis- differential and common mode gains, CMRR, input and output resistance, Voltage gain. Virtual ground. Concept of current mirror-the two transistor current mirror, Wilson and Widlar current mirrors. 	9
II	Op-amp with negative feedback : General concept of Voltage Series, Voltage Shunt, current series and current shunt negative feedback, Op Amp circuits with voltage series and voltage shunt feedback, Virtual ground Concept; analysis of practical inverting and non-inverting amplifiers for closed loop gain, Input Resistance and Output Resistance. Op-amp applications: Summer, Voltage Follower-loading effects, Differential and Instrumentation Amplifiers, Voltage to current and Current to voltage converters, Integrator, Differentiator, Precision rectifiers, Comparators, Schmitt Triggers, Log and antilog amplifiers.	10
III	 Op-amp Oscillators and Multivibrators: Phase Shift and Wien-bridge Oscillators, Triangular and Sawtooth waveform generators, Astable and monostable multivibrators. Active filters: Comparison with passive filters, First and second order low pass, High pass, Band pass and band reject active filters, state variable filters. 	9
IV	Timer and VCO: Timer IC 555- Functional diagram, Astable and monostable operations;. Basic concepts of Voltage Controlled Oscillator	

	and application of VCO IC LM566,	8
	Phase Locked Loop – Operation, Closed loop analysis, Lock and capture range, Basic building blocks, PLL IC 565, Applications of PLL.	
V	 Voltage Regulators: Fixed and Adjustable voltage regulators, IC 723 – Low voltage and high voltage configurations, Current boosting, Current limiting, Short circuit and Fold-back protection. Data Converters: Digital to Analog converters, Specifications, Weighted resistor type and R-2R Ladder type. Analog to Digital Converters: Specifications, Flash type and Successive approximation type. 	9
	TOTAL HOURS	45

TEXT/REFERENCE BOOKS:

T/R	BOOK TITLE/AUTHORS/PUBLICATION
Т	Roy D. C. and S. B. Jain, Linear Integrated Circuits, New Age International, 3/e, 2010
Т	Franco S., Design with Operational Amplifiers and Analog Integrated Circuits, 3/e, Tata McGraw Hill, 2008
R	Gayakwad R. A., Op-Amps and Linear Integrated Circuits, Prentice Hall, 4/e, 2010.
R	Salivahanan S. and V. S. K. Bhaaskaran, Linear Integrated Circuits, Tata McGraw Hill, 2008
R	R.F. Coughlin & Fredrick Driscoll, Operational Amplifiers & Linear Integrated Circuits, 6th Edition, PHI,2001
R	C.G. Clayton, Operational Amplifiers, Butterworth & Company Publ. Ltd./ Elsevier, 1971.
R	David A. Bell, Operational Amplifiers & Linear ICs, Oxford University Press, 2nd
	edition,2010
R	Botkar K. R., Integrated Circuits, 10/e, Khanna Publishers, 2010.
R	Sedra A. S. and K. C. Smith, Microelectronic Circuits, 6/e, Oxford University Press, 2013

COURSE PRE-REQUISITES:

C.CODE	COURSE NAME	DESCRIPTION	SEM
ECT202	ANALOG CIRCUITS (2019 Sch.)	Small signal analysis of BJT, MOSFET	3
		is familiarized.	
		High frequency analysis of BJT,	
		MOSFET is dealt.	
		Basic concepts of power amplifiers,	
		feed back amplifiers and voltage	
		regulators were discussed.	

COURSE OBJECTIVES:

1	To equip the students with a sound understanding of fundamental concepts of operational amplifiers
2	To know the diversity of operations that op amp can perform in a wide range of applications
3	To introduce a few special functions integrated circuits.
4	To impart basic concepts and types of data converters

COURSE OUTCOMES:

SNO	DESCRIPTION	Blooms' Taxonomy Level
1	Outline Op Amp fundamentals and differential amplifier configurations.	Understand (level 2)
2	Design operational amplifier circuits for various applications	Understand, Apply (level 2, 3)
3	Design Oscillators and active filters using op amps	Understand, Apply (level 2, 3)
4	Explain the working and applications of timer, VCO and PLL ICs	Understand, Apply (level 2, 3)
5	Outline the working of Voltage regulator IC's and Data converters	Understand, Apply (level 2, 3)

CO – PO and CO – PSO mapping

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
СО.1	3	3	1	2	-	-	-	-	-	-	-	1	3	-	1
СО.2	3	3	2	2	2	-	-	-	-	-	-	1	3	1	1
СО.З	3	3	2	2	2	-	-	-	-	-	-	1	3	1	1
СО.4	3	3	1	2	2	-	-	-	-	-	-	1	3	1	1
СО.5	3	3	2	2	2	-	-	-	-	-	-	1	2	-	1

CO – PO mapping Justification

MAPPING	LOW/ MEDIUM/HIGH	JUSTIFICATION
CO1- PO1	Н	Students understand the need and complete working of differential amplifier and its analysis.
CO1- PO2	Н	Students are able to analyze various OPAMP applications.
CO1- PO3	L	Analog circuits can be designed and modified to provide solutions to real-life problems
CO1-PO4	М	Op-amp based circuits will help to conduct investigations, solve complex problems
CO1-PO12	L	With prior knowledge of op-amp fundamentals, students

COURSE HANDOUT: S5

		can use their knowledge to simulate, experiment & develop
C01- PS01	Н	Students understand the importance of differential amplifier.
C01-PS03	L	Understanding OPAMP helps students to take part in multidisciplinary projects
CO2 - PO1	Н	Design & demonstration of experiments will help to identify the problems and lead to modifications
CO2 – PO2	Н	Analog circuits can be designed and modified to provide solutions to real-life problems
CO2 – PO3	М	Design & demonstration of experiments will help to identify the problems and lead to modifications
CO2 - PO4	М	Op-amp based circuits will help to conduct investigations, solve complex problems in different applications.
CO2 - PO5	М	Analog circuits can be designed and modified using model simulation tools to provide solutions to different applications.
CO2-PO12	L	With prior knowledge of op-amp basics, students can use their knowledge to simulate, experiment & develop newer applications in real life.
CO2 - PSO1	Н	Students understand the importance of feedback.
CO2 – PSO2	L	Able to design OPAMP circuits helps in developing new circuits for different applications
CO2 – PSO3	L	Designing various applications using opamp helps in team building and leadership
CO3-PO1	М	Students are able to analyze various OPAMP applications.
CO3-PO2	L	Students will be able to learn model tool usage.
СОЗ-РОЗ	L	Students are capable to develop various OPAMP application circuits.
CO3-PO4	М	Op-amp based circuits will help to conduct investigations, solve complex problems in different applications.
CO3-PO5	М	Students will be able to analyze various waveform generators and filters.
СОЗ-РО12	L	With prior knowledge of op-amp basics, students can use their knowledge to simulate, experiment & develop newer applications in real life.
CO3-PSO1	Н	Students understand the importance of OPAMPs in wave form generators.
CO3-PSO2	L	Able to design OPAMP circuits helps in developing new systems
CO3-PSO3	L	Designing circuits using opamp helps in team building and leadership
CO4-PO1	L	Students will be able to design the circuits based on 555 timer.
CO4-PO2	М	Students are able to understand and explain PLL.

CO4-PO3	М	Students learn new concepts on basic ICs
CO4-PO4	II	Knowledge of design of basic ICs helps solve complex
	П	problems in different applications.
CO4-PO5	I	Students will be able to design the circuits to perform
	Ц	various data conversion operation.
CO4-PO12	М	Students are able to understand and explain data
	111	converters.
CO4-PSO1	н	Sound knowledge of the core concept of working of OPAMP
	11	as a differential amplifier
CO4-PSO2	I.	Able to design basic ICs circuits helps in developing new
		systems
CO4-PSO3	I.	Doing circuits with ICs helps in team building and
		leadership
CO5-PO1	н	Students understand the basics of data converters –
	11	DAC/ADC
CO5-PO2	н	Students can design data converters – DAC/ADC for new
	11	applications
CO5-PO3	м	Students are able to solve real world problems using
		ADC/DAC
C05-P04	М	Knowledge of design helps solve complex problems
CO5-PO5		Analog circuits can be designed and modified using model
	M	simulation tools to provide solutions to different
		applications.
CO5-PO12		With prior knowledge of op-amp basics, students can use
	L	their knowledge to simulate, experiment & develop newer
		applications in real life.
CO5-PSO1	М	Students understand the importance of regulator and
		ADC/DAC circuits
CO5-PSO3	L	Designing circuits based on ADC/DAC and regulators in
	<u> </u>	projects helps in team building and leadership

GAPS IN THE SYLLABUS - TO MEET INDUSTRY/PROFESSION REQUIREMENTS:

SNO	DESCRIPTION	PROPOSED ACTIONS	RELEVANCE WITH POs	RELEVANCE WITH PSOs
1	Internal block diagram of opamp and its analysis.	NPTEL	P01, P02	PSO3
2	MOSFET operational amplifiers	NPTEL	P01, P02	PSO3

PROPOSED ACTIONS: TOPICS BEYOND SYLLABUS/ASSIGNMENT/INDUSTRY VISIT/GUEST LECTURER/NPTEL ETC

TOPICS BEYOND SYLLABUS/ADVANCED TOPICS/DESIGN:

SNO	DESCRIPTION	PROPOSED ACTIONS	RELEVANCE WITH POs	RELEVANCE WITH PSOs

1	Other applications of 555 timer	Assignment	P01, P02	PSO1, PSO3
2	Operational Transconductance amplifiers (OTA)	Assignment	P01	PSO1, PSO3
3	Power operational amplifiers (POA)	Assignment	P01	PSO1, PSO3

WEB SOURCE REFERENCES:			
1	https://nptel.ac.in/courses/117/107/117107094/#		
2	www.ti.com		
3	www.analog.com		
4	www.ocw.mit.edu		

DELIVERY/INSTRUCTIONAL METHODOLOGIES:

🗆 CHALK & TALK 🗸	\Box STUD. ASSIGNMENT \checkmark	U WEB RESOURCES	□ LCD/SMART BOARDS
🗆 STUD. SEMINARS	□ ADD-ON COURSES		

ASSESSMENT METHODOLOGIES-DIRECT

□ ASSIGNMENTS ✓	□ STUD. SEMINARS	□ TESTS/MODEL	\Box UNIV. EXAMINATION \checkmark
		EXAMS 🗸	
🗆 STUD. LAB	🗆 STUD. VIVA	□ MINI/MAJOR	\Box CERTIFICATIONS
PRACTICES		PROJECTS	
🗆 ADD-ON	□ OTHERS		
COURSES			

ASSESSMENT METHODOLOGIES-INDIRECT

□ ASSESSMENT OF COURSE OUTCOMES (BY	\Box STUDENT FEEDBACK ON FACULTY (TWICE) 🗸
FEEDBACK, ONCE) 🗸	
□ ASSESSMENT OF MINI/MAJOR PROJECTS	□ OTHERS
BY EXT. EXPERTS	

Prepared by
Dr. Poornima S.
(Faculty)

Approved by Dr. Hari C.V. (HOD)

Course Plan

Sl No	Module	Topics Planned
1	1	Syllabus introduction, revision of biasing and
I	1	transistor as amplifier
2	1	Differential amplifier configurations
3	1	Block diagram of op-amp,parameters of op-amp
		Ideal characteristics of op-amp,equivalent circuit of
4	1	practical op-amp,ideal voltage transfer curve of op-
		amp
5	1	Open loop configurations of op-amp
6	1	Effect of open loop gain, bandwidth and slew rate on
	-	circuit performance
7	2	Introduction to negative feedback, configurations of
		Voltage series feedback amplifier derivation of i /n
8	2	resistance voltage gain
		Voltage series feedback amplifier-derivation of o/p
9	2	resistance, bandwidth
10	n	Voltage shunt feedback amplifier-derivation of i/p
10	Ζ	resistance,voltage gain,o/p resistance,BW
11	2	Assumptions for analysis of op-amp, analysis of non-
	-	inverting amplifier
12	2	Inverting amplifier, subtractor
13	2	Inverting ,non-inverting adders
14	2	Adder-subtractor derivation
15	2	Problems on op-amp circuits
16	2	Instrumentation amplifier
17	2	V to I and I to V converters
18	2	Precision HWR
19	2	precision FWR
20	2	Log amplifier
21	2	Antilog amplifier
22	2	Integrator
23	2	Differentiator
24	2	Comparators
25	3	Zero crossing detector,Schmitt trigger
26	3	Schmitt trigger with different triggering levels
27	3	Wien bridge oscillator
28	3	RC phase shift oscillator
29	3	Triangular & Sawtooth wave generator
30	3	Astable multivibrator

31	3	Monostable multivibrator
32	3	Active filters-1st order LPF,HPF
33	3	I order BSF,BPF,problems
34	3	Second order LPF
35	4	Second order HPF
37	4	Design of second order BPF, BSF, State variable filters
38	4	IC 555- Functional diagram
39	4	Astable MV using 555, Monostable MV using 555
40	4	Basic concepts of Voltage Controlled Oscillator
41	4	Application of VCO IC LM566, PLL working
42	5	Closed loop analysis of PLL, Blocks of PLL IC 565 in detail
43	5	Applications of PLL
44	6	Fixed & Adjustable Voltage regulators-iC723-low & high voltage
45	6	Short circuit protection, current limiting,foldback protection, Current boosting
46	6	DAC specifications, weighted resistor type DAC
47	6	R-2R ladder type DAC
48	6	ADC specifications, counter ramp ADC
51	1	Successive approximation type ADC
52	1	Flash type ADC
53	1	AC analysis,CMRR derivation
54	1	Methods to improve CMRR
55	1	Current source, current mirror circuits
56	1	Active load
57	1	Wilson current mirror
58	1	Frequency response of Differential amplifiers
59	1	Gilbert multiplier cell
60	1	Problems + Remedial
61	1	Solving previous Q.papers

ASSIGNMENT QUESTIONS

AET 307 ANALOG INTEGRATED CIRCUITS

ASSIGNMENT 1

Date : 10/1/2022

Max Marks 15

Submit on or before 23/01/2022

The following simulations can be done in QUCS, KiCad or PSPICE or TINA TI.

- 1. Design and simulate inverting amplifier for gain 15. Observe the input and output signals. Run the ac simulation and observe the frequency response and 0dB bandwidth.
- 2. Design and implement Schmitt trigger circuit for upper triggering point of +3 V and a lower triggering point of -3 V using op-amps.
- Design a non-inverting comparator circuit using opamp for different reference voltages, Vref =i) 2V ii) -2V and iii) 0V and iv) 3V generated using potential divider from the +/-15V power supply. (Do not use extra supply for Vref) Plot input & output waveforms& transfer characteristics.
- 4. Design and simulate Wien bridge oscillator for a frequency of 10 kHz. Run a transient simulation and plot the output waveform.
- 5. Design and simulate an RC Phase Shift oscillator for a frequency of 20 kHz. Run a transient simulation and plot the output waveform.
- 6. Design and implement differential amplifier and measure its CMRR. Plot its transfer characteristics.
- 7. Design and simulate non-inverting amplifier for gain 5. Observe the input and output signals. Run the ac simulation and observe the frequency response and 3dB bandwidth.
- Design an inverting comparator circuit using opamp for different reference voltages, Vref =i) 2V ii) -2V and iii) 0V and iv) 3V generated using potential divider from the +/-15V power supply. (Do not use extra supply for Vref) Plot input & output waveforms & transfer characteristics.
- 9. Design and implement Schmitt trigger circuit for upper triggering point of +8 V and a lower triggering point of -4 V using op-amps.
- 10. Design a circuit to generate the following output: Vo = V1 + 2V2 V3 V4.
- 11. Design an opamp circuit to obtain an output voltage V_0 = (2V₁+4V₂ + 3V₃)

AET 307 ANALOG INTEGRATED CIRCUITS

ASSIGNMENT 2

Date :7/2/2022

Max Marks 15

Submit on or before 20/02/2022

Each question carries 3 marks

- 1. Design an opamp circuit to obtain an output voltage V_0 = (2V₁+4V₂ + 3V₃)
- 2. Design a circuit to generate the following output: Vo = V1 + 2V2 V3 V4.
- 3. Draw the circuit diagram of a differential instrumentation amplifier with a transducer bridge and show that the output voltage is proportional to the change in resistance.
- 4. Design aWien bridge oscillator for a frequency of 10 kHz.
- 5. Design an RC Phase Shift oscillator for a frequency of 10 kHz.

Tutorials

Tutorial 1

21/12/21 5th hour

Problems on OPAMP circuits

- A differential amplifier shown below has a differential gain of 100 and a CMRR of 40 dB. If V1 = 0.6 V and V2 = 0.4 V calculate the output voltage. (Given V0=AdVd+AcVc, where Ad is the difference mode gain, Ac is the common mode gain, Vd is the input difference voltage &Vc is the common mode voltage, Vc=(V1+V2)/2).
- 2. An inverting op-amp has an open-loop voltage gain and closed-loop voltage gain of 100,000 and 30 respectively. If an op-amp with an open-loop voltage gain of 300,000 is substituted in the arrangement, the closed-loop gain(a)doubles (b) drops to 15 (c)remains at 30

HUT300: INDUSTRIAL ECONOMICS & FOREIGN TRADE

COURSE INFORMATION SHEET

PROGRAMME: COMMON TO ALL BRANCHES	DEGREE: B.TECH
COURSE: INDUSTRIAL ECONOMICS & FOREIGN TRADE	SEMESTER: 5 CREDITS: 3
COURSE CODE: HUT300	COURSE TYPE: CORE
REGULATION: 2019	
COURSE AREA/DOMAIN: APPLIED ECONOMICS	CONTACT HOURS: 3-0-0
CORRESPONDING LAB COURSE CODE (IF ANY): NIL	LAB COURSE NAME: NIL

Preamble: To equip the students with basic economic concepts to take industrial decisions and to create an awareness of economic environment.

Prerequisite: Nil

SYLLABUS:				
UNIT	DETAILS	HOURS		
Ι	Basic Concepts and Demand and Supply Analysis:	7		
	• Scarcity and Choice-Basic Economic Problems-PPC			
	 Firms and its Objectives–Types of Firms 			
	Utility–Law of Diminishing Marginal Utility			
	• Demand and its Determinants-Law of Demand - Elasticity of Demand -			
	measurement of Elasticity and its applications			
	• Supply, Law of Supply and Determinants of Supply			
	• Equilibrium – Changes in Demand and Supply and its effects			
	Consumer Surplus and Producer Surplus (Concepts)			
	Taxation and Deadweight Loss.			
II	Production and Cost:	7		
	Production Function – Law of Variable Proportion – Economies of Scale –			
	Internal and External Economies			
	 Isoquants, Isocost Line and Producer's Equilibrium – Expansion path 			
	 TechnicalProgress and its Implications – Cobb-Douglas Production 			
	Function			
	Cost concepts – Social Cost: Private Cost and External Cost – Explicit and			
	Implicit Cost – Sunk Cost			
	 Short Run Cost Curves - Long Run Cost Curves 			
	Revenue (concepts)			
	• Shutdown Point – Break-even Point.			
	FIRST INTERNAL EXAM			
III	Market Structure:	6		
	 PerfectandImperfectCompetition 			
	 Monopoly,RegulationofMonopoly 			
	 MonopolisticCompetition (features and equilibrium of a firm) 			
	 Oligopoly – Kinked Demand Curve – Collusive Oligopoly (meaning) 			

		 Non-priceCompetition ProductPricing-CostPlusPricing-TargetReturnPricing - Penetration Pricing 		
		 Predatory Pricing – Going Rate Pricing – Price Skimming. 		
]	V	Macro-Economic Concepts: • Circular Flow of Economic Activities • Stock and Flow – Final Coods and Intermediate Coods – Cross Demostia	7	
		 Stock and Flow – Final Goods and Intermediate Goods - Gloss Domestic Product National Income 		
		 Three Sectors of an Economy- Methods of Measuring National Income 		
		 Inflation- Causes and Effects – Measures to Control Inflation- Monetary and 		
		Fiscal Policies		
		 Business Financing- Bonds And Shares -Money Market And Capital Market 		
		 Stock Market – DematAccount And Trading Account - SENSEX And NIFTY 		
SECOND INTERNAL EXAM				
	V	International Trade:	8	
		 Advantages and Disadvantages of International Trade 		
		Absolute and Comparative Advantage Theory		
		Heckscher- Ohlin Theory		
		• Balance of Payments – Components – Balance of Payments – Deficit and		
		Devaluation		
		• Trade Policy–Free Trade Versus Protection – Tariff and Non-Tariff Barriers.		
		TOTAL HOURS	35	

TEXT/REFERENCE BOOKS:

T/R	BOOK TITLE/AUTHORS/PUBLICATION
Т	Gregory N Mankiw, 'Principles of Micro Economics', CengagePublications
Т	Gregory N Mankiw, 'Principles of Macro Economics', CengagePublications
Т	Dwivedi D N, 'Macro Economics', Tata McGraw Hill, NewDelhi.
Т	Mithani D M, 'Managerial Economics', Himalaya Publishing House,Mumbai.
Т	Francis Cherunilam, 'International Economics', McGraw Hill, NewDelhi.

COURSE OBJECTIVES:

1	To familiarise the underlying concepts like scarcity, choice, demand and supply, and utility in economics
2	To understand the concepts related to cost and apply while analysing production function of a

2 To understand the concepts related to cost and apply while analysing production function of a firm
 2 To differentiate between different merilest structures and evaluate the competitive conditions of a second structures.

3 To differentiate between different market structures and evaluate the competitive conditions of each market feasible for firms

- **4** To effectively analyse reasons behind economic fluctuations occurring in the country by learning important macroeconomic indicators and policies
- **5** To logically identify the link between domestic and international market and its implications on the host country

COURSE OUTCOMES:

COURSE OUTCOME	EXPLANATION
C01	Explain the problem of scarcity of resources and consumer behaviour, and to evaluate the impact of government policies on the general economic welfare. (Cognitive knowledge level: Understand)
CO2	Take appropriate decisions regarding volume of output and to evaluate the social cost of production. (Cognitive knowledge level: Apply)
CO3	Determine the functional requirement of a firm under various competitive conditions. (Cognitive knowledge level: Analyse)
CO4	Examine the overall performance of the economy, and the regulation of economic fluctuations and its impact on various sections in the society. (Cognitive knowledge level: Analyse)
C05	Determine the impact of changes in global economic policies on the business opportunities of a firm. (Cognitive knowledge level: Analyse)

CO-PO MAPPING												
CO/PO	PO 1	PO 2	РО 3	PO 4	PO 5	P0 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12
CO 1	2										3	
CO 2	2	2			2	2	3				3	
CO 3	2	2	1								3	
CO 4	2	2	1			1					3	
CO 5	2	2	1								3	

CO-PO MAPPING (JUSTIFICATION)

CO/P O	PO 1	PO 2	PO 3	PO 5	PO 6	P0 7	PO 11
CO 1	Knowledge of economic concepts elaborated in Module I are required to understand, analyse and find solutions to societal problems.						Module I helps to apply the concept of scarcity considering the major economic problems and finding the feasible output production at a point of time. Eg: PPF
CO 2	Knowledge of economic concepts elaborated in Module II are required to analyse and evaluate the cost of production and find optimum output at firm level.	The concepts related to Production cost in Module II like TC, AC, MC etc,in identifying the variations in production functionand its impact on an industrial undertaking.		As an economy progresses technological advancement and inclusive development are indispensable. The resource utilization and its optimal utilization is of greater importance during this advancement. Module II provides theoretical	Every firm level/industr ial level activity has its repercussion on the society. This impact can be identified using the cost concepts in Module III. For example, calculating	A firm in order to sustain should have an idea about profitability, that is about cost and revenue. The idea of social cost for example provides the impact of a firm's activity on the society/environm ent. Shut down point helps a firm to minimise its	Module II helps to apply the concepts of production like AC,VC& MC to determine the prices of factors of production, to calculate the cost of production, to identify optimal pricing and ways to minimise loss.

			1	I		1	1
				understanding	social cost.	loss. Module II	
				about Law of		gives this idea of	
				Variable		Production costs.	
				Proportions,			
				Optimal output			
				production etc for			
				firms/industry who			
				engage in			
				experimenting with			
				new methods of			
				production/technol			
				ogy.			
							Module III
	Knowledge of						provides
	Aconomic	Knowledge of	Module III				knowledge on
	conconts	times of	details about				markets where
	olaborated in	markets and	different kinds				every market has
	Modulo III aro	thoir footuros	of markets				different features
	module III ale	in Module III	feasible for				and hence it
	understand	III Module III	different kinds				gives an idea
	and evoluate	identify the	of firms.				about which
CO 3		tuentiny the	Identifying the				product will
	various iorins	types of	exact market				sustain in which
	OI IIIdI Ket	illai ket, tile	for a product				market.
		comparison	will increase				Identifying
	faentify	between firms	the scope for				market types
	reasible	in different	more				give an idea
	markets for	types of	innovations				about various
	unerent types	markets.	and solutions.				market strategies
	of firms.						that helpfirms to
							survive
							competitions in

						such markets.
			Not all lavora			Lourshing a
CO 4	Knowledge of economic concepts elaborated in Module IV are important macroeconomi c indicators like GDP, Inflation, etc to analyse and evaluate how variations in these indicators affect the economic conditions within an economy.	Module IV provides insight in to the endogenous factors affecting firm/industry. This helps in solving/findin g solutions to industrial problems within a country.	of the economy are equal. Every segment of the society deals with different kinds of problem. A policy impact may sometimes become boon to some segments but it can be a curse to some other segments of the economy. Module IV gives a general understanding of the macroeconomi c indicators and policy	The economic activities in a country are interdependent. An investment, the launch of a new product, expansion of an industry, inclusion of new technology create more employment opportunities, more revenue, increased demand, market failure etc. Module IV provides an understanding of how these economic activities are linked to each other and the changes resulting from this interdependence.		Launching a product or service in a society has its own implications, since every economic activity is interdependent. Module IV gives an idea on macroeconomic indicators required to understand the practicality of a anindustrial activity. The understanding of share market gives an idea about share capital, competition

			framework of our country.		among firms and the money market as a whole.
CO 5	Domestic and international markets are linked in a complex way in this era of globalization. Module V lays down the basic concepts to understand that link between the two markets.	Module V gives an insight in to how a firm is linked to a global network and the repercussions. It provides an idea about the exogenous forces affecting a firm's/industr y's survival.	When firms/industri es go global it is important to understand how export and import prices affect pricing of a product. This decides the profitability of a product and thereby the firm. Module V deals with foreign trade and its impact on the growth of a firm globally.		Entering a global market invites new technological spill over, export receipts, more investment, cost and more competition. Module V provides the complexities of international trade and the challenges the firm might face. This gives ground knowledge about how versatile a leader should be while managing a global firm/industry.

GAPS IN THE SYLLABUS - TO MEET INDUSTRY/PROFESSION REQUIREMENTS:

SNO	DESCRIPTION	PROPOSED ACTIONS
1	Cost Engineering	Audio PPT
2	Location Theories	Assignment
3	Industrial Policy and Growth in India	Classroom Discussion
4	Methods of evaluating Investment Decisions	Audio PPT
5.	Patents	Assignment
6	Risk Analysis and Decision Making	Audio PPT
7	Innovation and Rivalry	Classroom Discussion

Proposed Actions: Topics beyond Syllabus/Assignment/Industry Visit/Guest Lecturer/Nptel Etc

TOPICS BEYOND SYLLABUS/ADVANCED TOPICS/DESIGN:

- 1 Theories of Industrial Location and Regional Development
- 2 Industrial Investment Trends Kerala Model
- 3 Trends and Pattern of Regional Development in Kerala
- 4 Theories of Growth of Firms
- 5 Industrial Finance Sources of Finance

6 Social Cost Benefit Analysis

WEB SOURCE REFERENCES:

1	https://www.in	dia.gov.in/topics/indus	tries	National Portal of Ir	ndia	
				The Confederation	of Indian Industry	
				(CII) works to cre	eate and sustain an	
	1			environment co	nducive to the	
2	https://www.ci	1.1n/		development of	India, partnering	
				industry, Governme	ent, and civil society,	
				through advisory	and consultative	
	1			processes.	1	
	https://comme	rce.gov.in/		The Department for	mulates, implements	
				and monitors the I	oreign Trade Policy	
3				(FIP) Which pr	ovides the basic	
	framework of policy and strategy to			y and strategy to be		
			trada	noting exports and		
				The ASI frame is k	acad on the lists of	
				The ASI frame is based on the lists of		
				registered factories / units maintained		
4	http://mospi.ni	c.in/annual-survey-		each State and th	ose maintained by	
1	industries			registration authorities in respect of hidi		
			and cigar establishments and electricity			
				undertakings.		
				MSMEs are comp	lementary to large	
				industries as anci	llary units and this	
5	https://msme.g	gov.in/	sector contributes	enormously to the		
			socio-economic de	evelopment of the		
			country.			
D	ELIVERY/INSTR	UCTIONAL METHODOL	OGIE	:S:	1	
	✓ CHALK &	✓ STUD.	$\Box W$	'EB RESOURCES	\Box LCD/SMART	
	TALK	ASSIGNMENT			BOARDS	

✓ STUD.	□ ADD-ON COURSES		✓ ICT ENABLED			
SEMINARS			CLASSES			
ASSESSMENT MET	HODO	LOGIES-DIRECT				
✓ ASSIGNMENT	ГS	✓ STUD.	✓ TESTS/MODEL	✓ UNIV.		
		SEMINAR	EXAMS	EXAMINAT		
		S		ION		
🗆 STUD. LAB PRACT	ICES	🗆 STUD. VIVA	☐ MINI/MAJOR PROJECTS			
				CERTIFICATIONS		
□ ADD-ON COURSES	5	□ OTHERS	✓ GROUP			
			DISCUSSION(IV)			
ASSESSMENT METHODOLOGIES-INDIRECT						

✓ ASSESSMENT OF COURSE OUTCOMES (BY	✓ STUDENT FEEDBACK ON
FEEDBACK, ONCE)	FACULTY (TWICE)
□ ASSESSMENT OF MINI/MAJOR PROJECTS BY EXT.	□ OTHERS
EXPERTS	

Prepared by

Ms LekshmiVijayakumar

Approved by Dr. Sonia Paul

Ms. Neethu George

HOD(Basic Sciences & Humanities)

Ms Saritha V

(Faculty)

Course Plan

SI.No	Module	Planned
1	1	Scarcity and Choice,Basic Economic Problems Production Possibility Curve, Firms and its Objectives Demand,determinants,law of demand,elasticity Supply,determinants,law of supply,elasticity Equilibrium,Changes in demand and supply Consumer surplus and Producer surplus Taxation and deadweight loss.
2	1	Law of Variable Proportion
3	1	Internal and External economies of scale Isoquants, isocost line and Producer's equilibrium Expansion path-Technical progress and its implications Cobb-Douglas production function
4	1	Cost concepts-social, private and external cost. Explicit and Implicit cost.
5	1	Short run cost curves and Long run cost curves. Shut down point and Break-even point.
6	1	Perfect competition and Imperfect competition Monopoly and Monopolistic competition Oligopoly and Collusive Oligopoly
7	1	Product pricing, Cost plus pricing, Target return pricing
8	1	Penetration pricing, Predatory pricing Going rate pricing, Price skimming Circular flow of economic activities Circular flow of economic activities
9	2	Stock and flow,Final goods and intermediate goods. National Income- Three sectors of an economy Methods of measuring national income.
10	2	Inflation and causes and effects, measures to control inflation. Monetary and fiscal policies
11	2	Bonds and shares,money market and capital market Stock market,demat account and trading account.
12	2	Advantages and disadvantages on international trade, absolute and comparativ Heckscher-Ohlin theroy and BOP
13	2	Trade policy, free trade versus protection, tariff and non-tariff barriers
14	2	Scarcity and Choice,Basic Economic Problems Production Possibility Curve
15	2	Firms and its Objectives Demand,determinants,law of demand,elasticity Supply,determinants,law of supply,elasticity Equilibrium,Changes in demand and supply Consumer surplus and Producer surplus Taxation and deadweight loss.
16	2	Law of Variable Proportion
17	2	Internal and External economies of scale Isoquants, isocost line and Producer's equilibrium Expansion path-Technical progress and its implications Cobb-Douglas production function
18	3	Cost concepts-social, private and external cost. Explicit and Implicit cost.
19	3	Short run cost curves and Long run cost curves. Shut down point and Break even point.
20	3	Perfect competition and Imperfect coompetition Monopoly and Monopolistic competition Oligopoly and Collusive Oligopoly
21	3	Product pricing, Cost plus pricing, Target return pricing

22	3	Penentration pricing, Predatory pricing Going rate pricing, Price
		skimming Circular flow of economic activities Circular flow of economic
		activities
23	3	Stock and flow, Final goods and intermediate goods. National Income-
		Three sectors of an economy Methods of measuring national income.
24	4	Inflation and causes and effects, measures to control inflation. Monetary
		and fiscal policies
25	4	Bonds and shares, money market and capital market Stock
		market,demat account and trading account.
26	4	Advantages and disadvantages on international trade, absolute and
		comparativ Heckscher-Ohlin theroy and BOP
27	4	Trade policy, free trade versus protection, tariff and non-tariff barriers
28	4	Scarcity and Choice, Basic Economic Problems Production Possibility
		Curve
29	4	Firms and its Objectives Demand, determinants, law of demand, elasticity
		Supply,determinants,law of supply,elasticity Equilibrium,Changes in
		demand and supply Consumer surplus and Producer surplus Taxation
		and deadweight loss.
30	4	Law of Variable Proportion
31	4	Internal and External economies of scale Isoquants, isocost line and
		Producer's equibrium Expansion path-Technical progress and its
		implications Cobb-Douglas production function
32	4	Cost concepts-social,private and external cost. Explicit and Implicit cost.
33	5	Short run cost curves and Long run cost curves. Shut down point and
		Break even point.
34	5	Perfect competition and Imperfect coompetition Monopoly and
		Monopolistic competition Oligopoly and Collusive Oligopoly
35	5	Revision
	-	

ASSIGNMENT QUESTIONS

INDUSTRIAL ECONOMICS AND FOREIGN TRADE (HUT 300)

QUESTION NO: 1 - CO3 and CO4

Intellectual Property Rights (IPR) refers to creations of the mind: inventions, literary and artistic works and symbols, names and images and designs used in commerce. For a long time IPR protection was very low in India. As a student is it possible to identify the issues related with IPR in connection with the different types of IPR.

[Hint: Definition, Types, Issue with a case study, Validation.]

Content clarity: 4

Submission on time: 2

Presentation Style: 1.5

QUESTION NO: 2 – CO1 and CO2

Our environment faces several problems, and many of these seem to be worsening with time, bringing us into a time of a true environmental crisis. It is therefore becoming increasingly important to raise awareness of the existence of these issues, as well as what can be done to reduce their negative impact. One of the key issue is pollution and one among them is spillover of industrial waste.

Content clarity: 4

Submission on time: 2

Presentation Style: 1.5

MCN301: DISASTER MANAGEMENT

PROGRAMME: ALL	DEGREE: BTECH
COURSE: DISASTER MANAGEMENT	SEMESTER:5 CREDITS: 2
COURSE CODE: MCN301 REGULATION: 2019	COURSE TYPE: ELECTIVE
COURSE AREA/DOMAIN: Non-credit	CONTACT HOURS: 2+0(Tutorial) hours/Week.
CORRESPONDING LAB COURSE CODE (IF ANY): NIL	LAB COURSE NAME: NIL

COURSE INFORMATION SHEET

SYLLABUS:

UNIT	DETAILS	HOURS
I	Systems of earth Lithosphere- composition, rocks, soils; Atmosphere-layers, ozone layer, greenhouse effect, weather, cyclones, atmospheric circulations, Indian Monsoon; hydrosphere- Oceans, inland waterbodies; biosphere. Definition and meaning of key terms in Disaster Risk Reduction 5 and Management disaster, hazard, exposure, vulnerability, risk, risk assessment, risk mapping, capacity, resilience, disaster risk reduction, disaster risk management, early warning systems, disaster preparedness, disaster prevention, disaster mitigation, disaster response, damage assessment, crisis counselling, needs assessment.	5
II	Hazard types and hazard mapping; Vulnerability types and their assessment- physical, social, economic and environmental vulnerability. Disaster risk assessment-approaches, procedures	5
III	Disaster risk management -Core elements and phases of Disaster Risk Management Measures for Disaster Risk Reduction - Disaster prevention, mitigation, and preparedness. response- objectives, requirements; response planning; types of responses. Relief, international relief organizations	5
IV	Participatory stakeholder engagement; Disaster communication- importance, methods, barriers; Crisis counselling Capacity Building: Concept Structural and Non-structural Measures, Capacity Assessment; Strengthening Capacity for Reducing Risk	5
V	Common disaster types in India; Legislations in India on disaster management; V National disaster management policy; Institutional arrangements for disaster management in India. The Sendai Framework for Disaster Risk Reduction- targets, priorities for action, guiding principles	5
	TOTAL HOURS	25

TEXT/REFERENCE BOOKS:

T/R	BOOK TITLE/AUTHORS/PUBLICATION
T1	R. Subramanian, Disaster Management, Vikas Publishing House, 2018
T2	M. M. Sulphey, Disaster Management, PHI Learning, 2016
T3	UNDP, Disaster Risk Management Training Manual, 2016
T4	United Nations Office for Disaster Risk Reduction, Sendai Framework for Disaster Risk
	Reduction 2015-2030, 2015.

COURSE PRE-REQUISITES:

C.CODE	COURSE NAME	DESCRIPTION	SEM
NIL	NIL	NIL	NIL

COURSE OBJECTIVES:

1 The objective of this course is to introduce the fundamental concepts of hazards and disaster management

COURSE OUTCOMES:

Sl No.	P01	PO2	PO3	P04	PO5	P06	P07	P08	P09	P010	P011	P012	PSO1	PSO2	PSO3
	Defin	Define and use various terminologies in use in disaster management parlance													
1	andorganise each of these terms in relation to the disaster management cycle														
	(Cognitiveknowledge level: Understand)														
		2				2				2		2	1		
	Disti	nguish	betwe	en diff	erent h	nazard	types a	and vu	lnerab	ility typ	es and				
2	dovu	lnerab	ility as	sessm	ent (Co	gnitiv	e know	vledge	level: l	Jndersta	and).				
	2	3	2		2	2	3			3		2		1	
	Ident	ify the	compo	onents	and de	escribe	the pr	ocess	of risk	assessn	ient, and	d			
2	apply	v appro	priate	metho	odologi	es to a	ssess r	risk (Co	ognitiv	e knowl	edge				
5	level:	Under	stand)	•											
	2	3	2	2	2	2	3			3		2			2
	Expla	Explain the core elements and phases of Disaster Risk Management and													
4	developpossible measures to reduce disaster risks across sector														
	andcommunity (Cognitiveknowledge level: Apply)														
	3	3	3		2	2	3					2		2	2
	Identify factors that determine the nature of disaster response and discuss the								ss the						
5	variousdisaster response actions (Cognitive knowledge level: Understand).									d).					
	3	3			2	2	3					2	1		
	Expla	in the	variou	s legis	lations	and b	est pra	ctices	for disa	aster ma	anagem	ent			
	and r	iskred	uction	at nati	ional ai	nd inte	rnatio	nal lev	el (Cog	gnitive k	nowled	ge			
6	level:														
	Unde	rstand).				-				-				
	3					2	3	3				2	2		2

JUSTIFICATION FOR CO-PO MAPPING:

СО	PO	MAPPING	JUSTIFICATION
	P02	М	Awareness of standard terms used in disaster management will help students address practical engineering problems in challenging environments.
CO1	P06	М	Awareness of standard terms used in disaster management will help students assess the societal, health, and safety issues relevant to professional engineering practice.
	P010	М	Awareness of standard terms used in disaster management will help students communicate effectively with the engineering community and

CO	PO	MAPPING	JUSTIFICATION			
			society during an emergency.			
			Awareness of standard terms used in disaster management will help			
	P012	М	students pursue independent and life-long learning in the broadest			
			context of technological change post-pandemic.			
	P01	М	Various mathematical and numerical tools are used in vulnerability			
			assessment.			
	PO2	Н	Extensive research and a basic understanding of mathematics are			
			Assessing vulnerability helps the stakeholders to design a practical			
	P03	М	disaster management framework			
			Complex analytical and numerical modeling tools are used in			
	P05	М	vulnerability assessment.			
			Awareness of different hazard types and vulnerabilities will help the			
	P06	М	students to assess the societal, health, and safety issues relevant to the			
CO2			professional engineering practice.			
	P07	Н	Assessing vulnerability is essential in improving the capacity to reduce			
			the risks related to disasters.			
	D010	TT	The students will identify the vulnerable			
	P010	H	community/society/individuals and communicate with them			
			Awareness of disasters and vulnerability will beln students nursue			
	P012	М	independent and life-long learning in the broadest context of			
	1012		technological change post-pandemic.			
	P01	М	Various empirical and analytical methods are used in risk assessment.			
	002	Ц	Extensive research and a basic understanding of science, mathematics,			
	PUZ	11	and social sciences are needed to conduct a risk assessment.			
	P03	М	Risk assessment helps the stakeholders to design a practical disaster			
	100	1.1	management framework.			
	DOA	N	Research-based knowledge and a basic understanding of data analysis,			
	P04	M	data interpretation, and information synthesis are required to carry			
			Out a fisk assessment.			
	PO5	М	natural hazards like floods earthquakes landslides etc			
CO3			Awareness of risk assessment fundamentals will help the students			
	P06	М	assess the societal, health, and safety issues relevant to the professional			
			engineering practice.			
			Understanding elements at risk and risk assessment are essential in			
	P07	Н	strengthening the capacity, developing sustainable mitigation			
			measures, and improving resilience.			
	P010	Н	The students will identify the community/society/individuals at risk			
			and communicate with them effectively.			
	P012	М	nursue independent and life-long learning in the broadest context of			
	1012	141	technological change post-pandemic.			
			A basic understanding of engineering sciences and mathematics is			
CO4	P01	Н	needed to reduce disaster risks across sectors and communities.			

CO	PO	MAPPING	JUSTIFICATION
	P02	Н	Extensive research and a basic understanding of science, mathematics, and social sciences are needed to develop risk reduction measures.
	P03	Н	A decent disaster management framework helps the stakeholders to develop risk reduction measures.
	PO5	М	GIS and numerical modelingsoftwares can be used toanalyze natural hazards like floods earthquakes landslides etc
	PO6	М	Awareness of disaster risk management fundamentals will help the students assess the societal, health, and safety issues relevant to the professional engineering practice.
	P07	Н	Understanding the core elements and phases of disaster risk management is essential in strengthening the capacity, developing sustainable mitigation measures, and improving resilience.
	P012	М	Awareness of disaster risk management strategies will help students pursue independent and life-long learning in the broadest context of technological change post-pandemic.
	P01	Н	A basic understanding of engineering and social sciences is needed to formulate disaster response strategies.
	PO2	Н	Extensive research and a basic understanding of science, mathematics, and social sciences are needed to develop disaster response measures.
	PO5	М	Modern tools like GIS, GPS, etc., are used to develop emergency plans for natural hazards.
C05	P06	М	Awareness of the fundamentals of disaster response will help the students to assess the societal, health, and safety issues relevant to the professional engineering practice
	P07	Н	Understanding disaster response strategies is essential in strengthening the capacity, developing sustainable mitigation measures, and improving resilience.
	P012	М	Awareness of disaster response strategies will help students pursue independent and life-long learning in the broadest context of technological change post-pandemic.
	P01	Н	Awareness of various legislations, policies, and frameworks in disaster management will help students address practical engineering problems in challenging environments.
	P06	Н	Awareness of various legislations, policies, and frameworks in disaster management will help students assess the societal, health, and safety issues relevant to professional engineering practice.
C06	P07	Н	Understanding various legislations, policies, and frameworks in disaster management is essential in strengthening the capacity, developing sustainable mitigation measures, and improving resilience.
	P08	Н	A professional engineer should be aware of various legislations, policies, and frameworks in disaster management.
	P012	М	Awareness of various legislations, policies, and frameworks in disaster management will help students pursue independent and life-long learning in the broadest context of technological change post- pandemic.

CO	PSO	MAPPING	JUSTIFICATION
C01	PSO1	L	Awareness of standard terms used in disaster
			managmenet will help students address practival
			engineering problems in challenging enviornments using
			instrumentation devices.
C02	PSO2	L	Develop suitable instruments with standard to b used
			during disaster management.
CO3	PSO3	М	Develop the leadership qualities in situations of risk
			management and analysis methods.
C04	PSO2	М	Designing suitable disaster management devices
	PSO3	М	Developing new devices working in a team
C05	PSO1	L	Apply engieneering knowledge for disaster management
C06	PSO1	L	Developing and designing new instrumentation system
			for disaster management.
	PSO3	Н	Awareness of various legislations, policies, and
			frameworks in disaster management will help students
			pursue independent and life-long learning in the
			broadest context of technological change post-pandemic

GAPS IN THE SYLLABUS - TO MEET INDUSTRY/PROFESSION REQUIREMENTS:

Sl No	DESCRIPTION	PROPOSED ACTIONS
1	Case study of Kerala Floods 2018	Classroom lectrures
2	Case studies of air accidents	Assignment

CONTENTS TAKEN BEYOND THE SYLLABUS:

Sl No	DESCRIPTION	PROPOSED ACTIONS
1	Early warning systems for Tsunami and Cyclone	NPTEL Videos

WEB SOURCE REFERENCES:

Sl No	DESCRIPTION
1	https://nptel.ac.in/courses/105/104/105104183/
2	https://nptel.ac.in/courses/124/107/124107010/

DELIVERY/INSTRUCTIONAL METHODOLOGIES:

CHALK & TALK	✓	STUD. ASSIGNMENT	✓	WEB RESOURCES	✓
LCD/SMART BOARDS		STUD. SEMINARS		ADD-ON COURSES	

ASSESSMENT METHODOLOGIES-DIRECT:

ASSIGNMENTS	~	STUD. SEMINARS	TESTS/MODEL EXAMS	✓	UNIV. EXAMINATION	~
STUD. LAB PRACTICES		STUD. VIVA	MINI/MAJOR PROJECTS		CERTIFICATIONS	

ADD-ON COURSES	OTHERS			

ASSESSMENT METHODOLOGIES-INDIRECT:

ASSESSMENT OF COURSE OUTCOMES (BY FEEDBACK, ONCE)	~	STUDENT FEEDBACK ON FACULTY (TWICE)	✓
ASSESSMENT OF MINI/MAJOR PROJECTS BY EXT. EXPERTS		OTHERS	

Prepared & Ms. Lekshmi M.S. (Faculty) Approved by Dr. Hari C.V. (HOD)
SI.No	Module	Planned
1	1	Systems of earth: Lithosphere - composition, rocks, soils; Atmosphere- layers, ozone layer, greenhouse effect,
2	1	Weather, cyclones, atmospheric circulations, IndianMonsoon;
3	1	Hydrosphere- Oceans, inland water bodies; biosphere
4	1	Reduction and Management- disaster, hazard, exposure, vulnerability, risk, risk assessment, risk mapping, capacity,
_	1	Resilience, disaster risk reduction, disaster risk
5	1	Disaster mitigation, disaster response, damage
6	1	assessment, crisis counselling, needs assessment.
7	2	Hazards types and hazard mapping
8	2	Vulnerability and their assessment
9	2	Physical, social, economic and environmental vulnerability
10	2	Disaster risk assessment-approaches, procedures
11	3	Disaster risk management-Core elements and phases Disaster Risk Management Measures for Disaster Risk Reduction-prevention.
12	3	mitigation and preparedness
13	3	Disaster response-objectives, requirement, responseplanning, types of responses
14	3	Relief; international relief organizations
15	4	Participator stakeholder engagement; Disaster
16	4	Crisis counselling, Capacity Building Concept-Structuraland Non structural Measures
17	4	Capacity assessment, Strengthening Capacity for
18	5	Common disaster types in India; legislations in India on
19	5	National disaster management policy; Institutional
20	5	The Sendai Framework for Disaster Risk Reduction
21	5	Sendai Framework for Disaster Risk reduction-Targets,
22	5	Sendai Framework for Disaster Risk reduction: guidingprinciples

Course Plan

Assignment questions

Assignment questions

Assignment 1

- 1. Highlight the risk reduction measures and post disaster needs in case of ' air accidents'
- 2. "There is little scope for forecasting or warning in case of man made disaster". Discuss

Assignment 2

Write short note on Sendai Frame work

AEL331: ANALOG INTEGRATED CIRCUITS AND INSTRUMENTATION LAB

Course information sheet

PROGRAMME: APPLIED ELECTRONICS &	DEGREE: BTECH
INSTRUMENTATION	
COURSE:	SEMESTER: 5 CREDITS: 2
ANALOG INTEGRATED CIRCUITS AND	
INSTRUMENTATION LAB	
COURSE CODE: AEL331	COURSE TYPE: CORE
REGULATION: 2019	
COURSE AREA/DOMAIN:	CONTACT HOURS: 3 Practical
ELECTRONICS	Hours/Week.
CORRESPONDING LAB COURSE CODE (IF	LAB COURSE NAME: NA
ANY): NA	

SYLLABUS:

UNIT	DETAILS	HOURS
1	Design and plot the frequency response of i) Inverting and Non inverting	3
	amplifiers ii) Differentiator and Integrator.	
2	Design of Adder circuits	3
3	Measurement of Opamp parameters.	3
4	Difference Amplifier and Instrumentation amplifier	3
5	Schmitt trigger circuit using Op –Amps	3
6	Astable and Monostable multivibrator using Op -Amps	3
7	Triangular and square wave generators using Op- Amps	3
8	RC Phase shift Oscillator using Op-Amps	
9	Wien bridge oscillator using Op-Amp - without & with amplitude	3
	stabilization	
10	Active second order filters using Op-Amp (LPF, HPF, BPF and BSF)	3
11	Astable and Monostable multivibrator using Timer IC NE555	3
12	Determination of the characteristics of LVDT ,Measurement of strain and	2
	load using strain gauges.	5
13	Determination of the characteristics of thermocouple.	
14	Determination of the characteristics of RTD	3
	TOTAL HOURS	36

TEXT/REFERENCE BOOKS:

T/R	BOOK TITLE/AUTHORS/PUBLICATION
R1	Sergio Franco: Design with Operational Amplifiers and Analog Integrated Circuits, 3/e,TMH.
R2	Gayakwad : Op-Amps and Linear Integrated Circuits , 4/e, PHI.
R3	K R Botkar: Integrated Circuits, 10/e, Khanna publishers
R4	Salivahanan S. ,V. S. K. Bhaaskaran, Linear Integrated Circuits, Tata McGraw Hill, 2008

COURSE PRE-REQUISITES:

C.CODE	COURSE NAME	DESCRIPTION	SEM
ECT202	ELECTRONIC CIRCUITS	To develop the basic idea about transistor circuits.	4
AET307	ANALOG INTEGRATED CIRCUITS	To know the fundamentals of op amp circuits.	5

COURSE OBJECTIVES:

1	Develop skills in designing and testing analog integrated circuits
2	Expose the students to a variety of practical circuits using various analog ICs
3	Understand the working principle of various transducers and their application in engineering

COURSE OUTCOMES:

SNO	DESCRIPTION	Blooms' Taxonomy Level
CO 1	Design the linear and non-linear applications of an opamp and special application ICs.	Understand, Apply (Level 2,3)
CO 2	Explain and compare the working of multivibrators using special application IC 555	Apply, Analyse (Level 3,4)
СО 3	Illustrate the function of application specific ICs such as Voltage regulators, Data converters and PLL.	Understand, Apply (Level 2,3)
CO 4	Explain the working of various transducers and their applications	Understand (Level 2)

CO – PO and CO – PSO mapping

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
СО	3	-	2	2	3	3	-	3	3	2	-	1	2	-	2
1															
СО	3	-	2	2	3	3	-	3	3	2	-	2	2	-	2
2															
СО	3	-	2	2	3	3	-	3	3	2	2	3	2	-	-
3															
СО	3	-	2	-	3	3	-	3	3	2	-	3	2	2	-
4															

CO-PO mapping Justification

MAPPING	LOW/ MEDIUM/HIGH	JUSTIFICATION
СО. 1- РО1	Н	The basic applications of OPAMPs is understood
СО 1-РОЗ	М	Design/development of solutions using op amp circuits

CO 1- PO4	М	Learn to conduct investigations of relevant problems				
CO 1- PO5	Н	Use modern simulation tools to implement op amp circuits				
		Apply reasoning based on the knowledge of basic opamp				
CO 1 DOC	TT	circuits in societal, health, safety sections relevant to				
<i>CO 1- PO6</i>	H	engineering parctice				
СО 1- РОВ	Н	Ethically apply the principles studied				
CO 1 DO0	Ц	Students will be able to work as a team in designing various				
101-709	11	OPAMP circuits in lab				
CO 1. P10	М	Students will be able to comprehend and analyze various				
01-110	1*1	OPAMP parameters in lab				
CO 1- P12	I.	Comprehending the problem and finding solution in the lab				
CO 1 112		prepares the student for lifelong learning.				
<i>CO</i> 1-	м	Fundamentals of OPAMP are studied and implemented for				
PSO1		different applications.				
<i>CO</i> 1-	М	Comprehending the problem and finding solution in the lab				
PS03	-	prepares the student for lifelong learning.				
CO. 2- PO1	Н	Various 555 timer circuits are designed and compared				
СО 2- РОЗ	М	Students will be capable for developing circuits with				
<u> </u>	М	OPAMPS				
<u>CO 2- PO4</u>	M	Students are able to learn new concepts.				
<i>CO 2- PO5</i>	H	Various 555 timer circuits are designed.				
CO 2- PO6	Н	Apply the design of timer circuits to solve problems in				
CO 2 DO0	TT	Society.				
LU 2- PU8	П	Students will be able to work as a team in designing various.				
СО 2- РО9	Н	OPAMP circuits in lab				
		Students are able to comprehend new concents and present				
CO 2- P10	М	them				
	М	Comprehending the problem and finding solution in the lab				
<i>CO 2- P12</i>		prepares the student for lifelong learning.				
<i>CO 2-</i>		Fundamentals of timers are studied and implemented for				
PSO1	M	different applications.				
СО 2-	N	Comprehending the problem and finding solution in the lab				
PSO3	IVI	prepares the student for lifelong learning.				
СО. 3- РО1	H	Students understand the concept of regulators and PLL IC				
СО 3- РОЗ	M	Students will be capable for designing regulators				
CO 3- PO4	M	Students are able to learn and implement new application				
05-104	11	using PLL				
<i>CO 3- PO5</i>	H	Various PLL circuits are learned and implemented.				
CO 3- PO6	Н	Apply the design of regulator and PLL circuits to solve				
		problems in society.				
<i>CO 3- PO8</i>	Н	Apply the concept of PLL for ethical applications.				
CO 3- PO9	Н	Students will be able to work as a team in designing various				
		PLL applications in lab				
CO 3- P10	М	Students are able to comprehend new concepts and present				
		them				
CO 3- P11	М	Knowledge of regulators helps in cost management in				
	×*1	various projects				

CO 3- P12	H	Comprehending the problem and finding solution in the lab
		prepares the student for lifelong learning.
СО 3-	М	Fundamentals of various analog ICs are studied and
<i>PS01</i>	1.1	implemented for different applications.
СО 3-	M	Comprehending the problem and finding solution in the lab
PSO3	IMI	prepares the student for lifelong learning.
СО. 4- РО1	Н	Students understand the concept of transducers
CO 4- PO3	М	Students will be capable for correct usage of transducers
CO 4 DOF	М	Students are able to learn and implement new application
<i>CO</i> 4- <i>PO</i> 5	IMI	using transducers
CO 4 DOC	Н	Working of transducers are learnt and understand their
LU 4- PU0		usage.
CO 4 DO0	Н	Apply the circuits using transducers to solve problems in
LU 4- PU8		society.
<i>CO 4- PO 9</i>	Н	Usage of transducers for ethical applications.
CO 4 D10	М	Students will be able to work as a team in designing various
CO 4- F10	М	applications in lab
CO 4 D12	ц	Students are able to comprehend new concepts and present
LU 4- F12	11	them
<i>CO</i> 4-	NA	Learning the concept of working of transducers and their
<i>PSO1</i>	IVI	application equips students for the industry
<i>CO</i> 4-	M	Experimenting with transducers equips students to build
PSO2	M	new systems meeting the industry standards

GAPS IN THE SYLLABUS - TO MEET INDUSTRY/PROFESSION REQUIREMENTS:

SNO	DESCRIPTION	PROPOSED ACTIONS	RELEVANCE WITH POS	RELEVANCE WITH PSOs
1	Log and Antilog amplifiers using op amp	Assignments	P01, P02	PSO3

PROPOSED ACTIONS: TOPICS BEYOND SYLLABUS/ASSIGNMENT/INDUSTRY VISIT/GUEST LECTURER/NPTEL ETC

TOPICS BEYOND SYLLABUS/ADVANCED TOPICS/DESIGN:

SNO	DESCRIPTION	PROPOSED ACTIONS	RELEVANCE WITH POs	RELEVANCE WITH PSOs
1	Function generator using operational amplifier	PSPICE simulation	PO1	PSO3

WEB SOURCE REFERENCES:

1	http://www.allaboutcircuits.com/worksheets/diffamp.html
2	http://www.talkingelectronics.com/projects/200TrCcts/101-200TrCcts.html
3	http://www.talkingelectronics.com/projects/100%20IC%20Circuits/1-100 IC-Ccts.html
Λ	http://www.talkingelectronics.com/projects/50%20-%20555%20Circuits/50%20-
Ŧ	%20555%20Circuits.html
5	http://www.stanford.edu/class/ee122/Parts Info/datasheets/op amp circuit%20collection_

	AN-31.pdf
6	http://rfic.eecs.berkeley.edu/ee42/pdf/lect10.pdf
7	http://fourier.eng.hmc.edu/e84/lectures/opamp/node3.html
8	http://www.ti.com/lit/ds/symlink/dac0800.pdf
9	http://www.555-timer-circuits.com/
10	http://www.electroschematics.com/

DELIVERY/INSTRUCTIONAL METHODOLOGIES:

□CHALK & TALK ✓	□STUD. ASSIGNMENT	□WEB RESOURCES ⁄	□LCD/SMART BOARDS
□STUD. SEMINARS	□ADD-ON COURSES		

ASSESSMENT METHODOLOGIES-DIRECT

□ASSIGNMENTS ✓	□STUD.	TESTS/MODEL	□UNIV. EXAMINATION ✓
	SEMINARS	EXAMS 🗸	
□STUD. LAB	□STUD. VIVA	□ MINI/MAJORPROJECTS	CERTIFICATIONS
PRACTICES			
ADD-ON	□OTHERS		
COURSES			

ASSESSMENT METHODOLOGIES-INDIRECT

□ASSESSMENT OF COURSE OUTCOMES (BY FEEDBACK, ONCE) ✓	□STUDENT FEEDBACK ON FACULTY (TWICE) ✓
□ASSESSMENT OF MINI/MAJOR PROJECTS	□OTHERS
BY EXT. EXPERTS	

Prepared by	Approved by
Dr. Poornima S. & Ms.Mary Hexy	Dr. Hari C.V.
(Faculty)	(HOD)

LAB CYCLE

SI.No	Planned
1	Differential Amplifier
2	Introduction to Operational Amplifiers
3	Familiarization of Operational amplifiers - Inverting and Non inverting amplifiers, frequency response
4	Measurement of Op-Amp parameters.
5	Adder, Averaging amplifier, Difference Amplifier &
	Instrumentation Amplifier
6	Integrator, Differentiator
7	Wien bridge oscillator
8	RC Phase shift Oscillator
9	Multivibrators
10	Triangular and square wave generators
11	Comparator, Zero crossing detector & Schimitt Trigger
12	Active second order filters using Op-Amp (LPF, HPF, BPF and
	BSF)
13	Notch filters to eliminate the 50Hz power line frequency
14	A/D converters- counter ramp and flash type.
15	D/A Converters- ladder circuit.

EXPERIMENT QUESTIONS

- 1. To design and setup inverting amplifier, non-inverting amplifier.
- 2. To set up a voltage follower and measure:
 - i. (a)Slew rate
 - ii. (b)Full power bandwidth
 - iii. (c)Maximum output Swing
- 3. Measure (a) Input Resistance
 - (b)CMRR
- 4. To design and set up a difference amplifier circuit.
- 5. To design and set up a Schmitt trigger using op-amp.
- 6. To plot the waveforms for the circuit.
- 7. To design and set up astable multivibrator and monostable multivibrator using op-amps.
- 8. To design and set up triangular and sawtooth wave generators using op-amp for 1kHz frequency.
- 9. To design and set up a Wien bridge oscillator for a frequency of 1 kHz.
- 10. To design and set up an RC phase shift oscillator at 1 kHz.
- 11. Design an astable multivibrator with time period 1.5ms
- 12. Design a monostable multivibrator with T_{on} =0.6 ms and total time period 2ms.
- 13. To design a low voltage variable regulator of 2 V to 7 V using IC 723

AEL 333: EMBEDDED SYSTEMS LAB

COURSE INFORMATION SHEET

PROGRAMME: APPLIED ELECTRONICS	DEGREE: BTECH
AND INSTRUMENTATION ENGINEERING.	
COURSE: EMBEDDED SYSTEMS LAB	SEMESTER: 5 CREDITS: 2
COURSE CODE: AEL333	COURSE TYPE: CORE
REGULATION: 2019	
COURSE AREA/DOMAIN: ELECTRONICS	CONTACT HOURS: 3 Practical
	hours/Week.
CORRESPONDING LAB COURSE CODE (IF	LAB COURSE NAME: NIL
ANY): NIL	

SYLLABUS:

	DETAILS	HOURS
A.	8051 Programs using kits :	6X3=18
	1. Data transfer/exchange between specified memory locations.	
	2. Largest/smallest from a series.	
	3. Sorting (Ascending/Descending) of data.	
	4. Addition / subtraction / multiplication / division of 8/16 bit data.	
	5. Sum of a series of 8 bit data.	
	6. Multiplication by shift and add method.	
	7. Square / cube / square root of 8 bit data.	
	8. Matrix addition.	
	9. LCM and HCF of two 8 bit numbers.	
	10. Code conversion – Hex to Decimal/ASCII to Decimal and vice versa.	
B.	Interfacing Experiments using 8051 Microcontroller	4X3=12
	1. Time delay generation and relay interface.	
	2. Display (LED/Seven segments/LCD) and keyboard interface.	
	3. ADC interface.	
	4. DAC interface with wave form generation.	
	5. Stepper motor and DC motor interface.	
	6. Realization of Boolean expression through port.	
	TOTAL HOURS	30

TEXT/REFERENCE BOOKS:

T/R	BOOK TITLE/AUTHORS/PUBLICATION			
1.	Muhammad Ali Mazidi, The 8051 Microcontroller and Embedded Systems, Pearson			
	Education.			
2.	Shibu K.V, Introduction to Embedded Systems, Mc Graw Hill			
3.	Kenneth J Ayala, The 8051 Microcontroller, Penram International			
4.	Rajkamal, Embedded Systems Architecture, Programming and Design, TATA			
	McGrawHill, First reprint Oct. 2003			

DEPARTMENT OF APPLIED ELECTRONICS & INSTRUMENTATION

COURSE PRE-REQUISITES:

C.CODE	COURSE NAME	DESCRIPTION	SEM
NIL			

COURSE OBJECTIVES:

1	Familiarize the students with Assembly Language Programming of modern microcontrollers.
2	Impart the skills for interfacing the microcontroller with the help of Embedded C/Assembly Language Programming.

COURSE OUTCOMES:

SNO	DESCRIPTION	Blooms'
		Taxonomy
		Level
1	Students will be able to Write an Assembly language	Knowledge
	program/Embedded C program for performing data manipulation.	Understand &
		Apply
		(Level 1,2 &3)
2	Students will be able to Develop ALP/Embedded C Programs to	Knowledge
	interface microcontroller with peripherals.	Understand &
		Apply
		(Level 1,2 &3)
3	Perform programming/interfacing experiments with IDE for	Knowledge &
	modern microcontrollers.	Apply
		(Level 1 & 3)

CO-PO AND CO-PSO MAPPING

	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PS01	PSO2	PSO3
CO.1	3	-	3	-	3	-	-	-	3	-	-	3	1	-	-
CO.2	3	-	3	2	3	-	-	-	3	-	-	3	1	-	-
CO.3	2	-	3	3	3	3	-	-	3	-	3	3	2	-	1

JUSTIFATIONS FOR CO-PO-PSO MAPPING

MAPPING	LOW/		JUSTIFICATION					
	MEDIUM							
	/HIGH							
CO.1- PO1	Н	Describe	the	functions,	capabilities,	programming	model	and

DEPARTMENT OF APPLIED ELECTRONICS & INSTRUMENTATION

		implementation of a computer system.
СО.1-РОЗ	Н	Understands the execution of computer instruction at the micro
		level.
СО.1-РО5	Н	Understand how to execute programs using the processor and
		controller kits and interfacing cards for executing programs and
		finding the solutions.
СО.1-РО9	М	Capable of solving various problems by developing different
		programs as a team
CO.1- PO12	L	With the knowledge acquired, development of different program
		to various systems is possible.
CO.1 – PSO1	М	Has sound technical knowledge in electronics.
<i>CO.1 – PSO3</i>	L	Will be able to learn the data flow, memory hierarchy, hardware
		requirements/costs, software-hardware trade-offs.
СО.2-РО1	Н	Understands the architecture and programmers model of 8051
		Microcontroller.
СО.2 – РОЗ	L	Able to formulate programs using instruction set.
<i>CO.2 – PO4</i>	Н	Able to analyze and execute the programs using microcontroller.
СО.2 – РО5	М	With the interfacing knowledge students are able to analyse
		different tools
СО.2 – РО9	М	Capable of solving interfacing using microcontroller by developing
		different programs as a team
СО.2 – РО12	Н	With the knowledge acquired, development of different program
		to various systems is possible.
<i>CO.2 – PSO1</i>	М	Has sound technical knowledge in electronics.
<i>CO.2 – PSO3</i>	L	Will be able to learn new concepts.
СО.3-РО1	Н	Understands the interfacing of 8051 microcontroller.
СО.3 – РОЗ	Н	Identifying the technique involved in various 8051 interfacing.
<i>CO.3 – PO5</i>	Н	Able to develop solutions for various 8051 interfacing.
CO.3 – PO5	Н	Able to attempt design experiments
СО.3 – РОб	Н	Aware of new tool usage.
СО.3 – РО9	М	Capable of solving programs using modern microcontrollers as a
		team
СО.3 – РО11	М	With the interfacing knowledge students are able to use the tools

DEPARTMENT OF APPLIED ELECTRONICS & INSTRUMENTATION

		to build their projects.
<i>CO.3 – PO12</i>	Н	With the knowledge acquired, development of different program to various systems is possible.
CO.3 – PSO1	М	Has sound technical knowledge in electronics.
<i>CO.3 – PSO3</i>	L	Able to develop programs for various concepts.

GAPS IN THE SYLLABUS - TO MEET INDUSTRY/PROFESSION REQUIREMENTS:

SNO	DESCRIPTION	PROPOSED ACTIONS	RELEVANCE WITH POs	RELEVANCE WITH PSOs
1	Interfacing of various practical devices has	Extra lab	PO2,PO3,	PSO1,
	to be concentrated.	experiments.	P05	PSO3

PROPOSED ACTIONS: TOPICS BEYOND SYLLABUS/ASSIGNMENT/INDUSTRY VISIT/GUEST LECTURER/NPTEL ETC

TOPICS BEYOND SYLLABUS/ADVANCED TOPICS/DESIGN:

SNO	DESCRIPTION	PROPOSED ACTIONS	RELEVANCE WITH POs	RELEVANCE WITH PSOs
1	Detailed study about advanced	Extra	P01	PSO1
	microcontrollers.	Assignments		
2	Familiarization of various development	Short term	PO1, PO5	PSO1, PSO3
	boards and Integrated development area.	course		
	(IDE)			

WEB SOURCE REFERENCES:

1	https://nptel.ac.in/courses/106/105/106105193/
2	https://nptel.ac.in/courses/108/102/108102045/
3	https://nptel.ac.in/courses/106/105/106105229/
4	https://nptel.ac.in/courses/106/105/106105172/
5	https://www.watelectronics.com/8051-microcontroller-architecture/

DELIVERY/INSTRUCTIONAL METHODOLOGIES:

🗆 CHALK & TALK	🗆 STUD.	U WEB RESOURCES	
	ASSIGNMENT		
□ LCD/SMART	□ STUD. SEMINARS	🗆 ADD-ON	
BOARDS		COURSES	

ASSESSMENT METHODOLOGIES-DIRECT

□ ASSIGNMENTS	🗆 STUD. SEMINARS	TESTS/MODEL	\Box UNIV.
		EXAMS	EXAMINATION
🗆 STUD. LAB	🗆 STUD. VIVA	□ MINI/MAJOR	□ CERTIFICATIONS

PRACTICES		PROJECTS	
🗆 ADD-ON	□ OTHERS		
COURSES			

ASSESSMENT METHODOLOGIES-INDIRECT

□ ASSESSMENT OF COURSE OUTCOMES (BY	□ STUDENT FEEDBACK ON FACULTY
FEEDBACK, ONCE)	(TWICE)
ASSESSMENT OF MINI/MAJOR PROJECTS BY	□ OTHERS
EXT. EXPERTS	

Prepared by	Approved by
Ms. Remya.K.R & Ms. Aparna George	Dr. Hari C.V.
(Faculty)	(HOD)

LAB CYCLE

SI.No	Planned	
CYCLE 1		
1	FAMILIARIZATION OF 8051 MICROCONTROLLER	
2	ADDITION / SUBTRACTION / MULTIPLICATION / DIVISION OF 8 BIT DATA.	
3	SQUARE / CUBE / SQUARE ROOT OF 8 BIT DATA.	
4	FAMILIARIZATION OF KEIL μ VISION IDE	
5	ADDITION AND SUBTRACTION OF 16 BIT DATA.	
6	DATA TRANSFER/EXCHANGE BETWEEN SPECIFIED MEMORY LOCATIONS.	
7	LARGEST/SMALLEST FROM A SERIES.	
8	SORTING (ASCENDING/DESCENDING) OF DATA	
9	CODE CONVERSION – DECIMAL TO ASCII / ASCII TO DECIMAL	
10	SUM OF A SERIES OF 8 BIT DATA	
11	CODE CONVERSION - HEX TO DECIMAL / DECIMAL TO HEX CONVERSION	
12	MATRIX ADDITION	
CYCLE 2		
13	TIME DELAY GENERATION USING 8051 MICROCONTROLLER	
14	RELAY AND LED INTERFACING WITH 8051 MICROCONTROLLER	
15	SEVEN SEGMENT DISPLAY INTERFACING WITH 8051 MICROCONTROLLER	
16	STEPPER MOTOR INTERFACING WITH 8051 MICROCONTROLLER	
17	DAC INTERFACING WITH 8051 MICROCONTROLLER	

Additional Questions

AEL 333: EMBEDDED SYSTEMS LAB

OPEN QUESTIONS

- 1. Upon power up, the 8051 fetches the first opcode from ROM address location
- 2. Every 8051 family member wakes up at address ______ when it is powered up.
- 3. Which register is used for accessing external memory?
- 4. Name a 16 bit register in 8051.
- 5. In multiplication of two bytes in the 8051, we must place one byte in register ______ and the other one in register ______
- 6. Is this a valid 8051 instruction? Explain your answer." MUL A, R1"
- 7. Find the CY and AC flags for the below instruction.

MOV A, #3FH

ADD A, #45H

8. Find the CY and AC flags for the below instruction.

MOV A, #99H
ADD A, #58H
ORG 00H
MOV A, #92H
ANL A, #0F0H
SWAP A
END

Find the final accumulator value.

10 ORG 00H

9.

MOV A, #76H
MOV R1, #04H
L1: RR A
DJNZ R1,L1
END

Find the final accumulator value.

11. Registers ACC and B are _____ bits wide.

12. Which of the following instructions are illegal? If illegal state the reason of each.

MOV R3, #500H MOV A, #255H MOV R9, #50H MOV A, #50H

13. Which of the following instructions are illegal? If illegal state the reason of each.

ADD R3, #50H

ADD A, #255H

MOV R9, R4

MOV A, R5

14. Assembly language is a _____ level language.

15. To mask upper nibble of the accumulator we must ANL it with ______.

16. What value must R5 have in order for the following instruction not to jump?

CJNE R4, #53, OVER

17. True or false. The CJNE instruction alters the contents of its operands.

18.

MOV A, #00H

MOV R2, 0AH

L2: ADD A, #03H

DJNZ R2, L2

MOV R5, A

L1: SJMP L1

Find the Hex code of the L1 the starting address is 9000H

19.

MOV A, #00H	
MOV R0, #00H	
MOV R1, 0AH	
L1: INC R0	
ADD A, RO	
DJNZ R1, L1	
L2: SJMP L2	

Find the Hex code of the L1 the starting address is 9000H

20. Why does "RLC R1" give an error in the 8051?

21.8051 is a _____ bit microcontroller.

22. What is the difference between CY and AC in 8051?

23. Show how to perform 77×34 in the 8051.

24. Show how to perform 77/34 in the 8051.

25. Show the instruction to load 1000 0000 (binary) into R3.

26. Explain the difference between the below instructions.

MOV A, R1

MOV A, @R1

27. Explain the difference between the below instructions.

MOV A, R1

MOVX A, @DPTR

28. The mnemonic DJNZ stands for _____

29. In "JZ NEXT", which registers content is checked to see if it is zero?

30. What is the content of the A register upon RESET of the 8051?

31. Write a program to generate a sinusoidal wave Vout = $2 + 2 \sin\theta$ using DAC 0808.

32. Write a program to generate the following waveform using DAC 0808.

33. Write a program to generate the following waveform using DAC 0808.

- 34. Write a program to rotate stepper motor in clockwise direction with 2ms delay in wave drive mode using rotate instruction
- 35. Write a program to rotate stepper motor in anticlockwise direction with 3ms delay in wave drive mode using rotate instruction
- 36. Write a program to rotate stepper motor in 76^o anticlockwise direction with a step angle of 4^o
- 37. Write a program to rotate stepper motor in 150^o clockwise direction and 480^o anticlockwise direction
- 38. Write a program to interface seven segment display to display digits 0,1,8,7,6,5,0,1,8,7,6,5,....with 8051 microcontroller. Assume XTAL = 11.0592 MHz.
- 39. Write a program to generate a square wave of 60 Hz frequency on pin P1.0 with 50% duty cycle (Ton = Toff). Assume XTAL = 11.0592 MHz
- 40. Write a program to generate a square wave on pin P1.0 with T_{ON} = 5mS and T_{OFF} = 3ms. Assume XTAL = 11.0592 MHz
- 41. Write a program to blink a LED which is connected to P3.1 with 6ms delay. Select timer 0, mode 1 operation
- 42. Write a program to blink a LED which is connected to P2.2 with 8ms delay. Select timer 0, mode 1 operation

AEL 333: EMBEDDED SYSTEMS LAB ADVANCED QUESTIONS

1. WALP in 8051 μ C to evaluate the following series: 1+4+9+16+25+....n terms; n being given as input.

2. WALP to find out the value of y according to the equation $y=x^3+5x^2+4$ for any given value of x.

3. Write a Embedded C program to rotate a stepper motor 90^{0} in the clock wise direction with 1.5µS delay for each step using 8051μ C.The speed of the rotation should be halved for the remaining 270^{0} .

4. Write a Embedded C program to rotate stepper motor continuously in the clock wise direction for an angle of 180^{0} at 25 rpm and then in anti-clock wise direction for 5 complete rotations using 8051μ C.The speed of the rotation should be halved for the remaining.

5. WALP to read port 1 to generate a square wave with 60% duty cycle if the value being read is FF_H, otherwise to generate a square wave with 10% duty cycle for all other cases.

6. Write an Embedded C program to display the sequence 1,3,5,7,9,0,2,4,6,8 for 5 times & stop the display using 8051 and seven segment display.

7. Write an Embedded C program to display the sequence 1,3,5,7,9,0,2,4,6,8 continuously using 8051 and seven segment display.

8. Design a one-way traffic line system with delay of 4 sec and pedestrian delay of 2 sec using 8051.

9. WALP to set up a Ring counter for 8 bits using 8051.

10. WALP to set up a Twisted-Ring counter for 8 bits using 8051.

- 11. WALP to generate a ramp signal
- 12. To generate the following wave form using 8051.

13. Design an up/down decade counter with 1.5 sec delay using LED's.

14. WALP to find out first 'n' prime numbers using 8051.

15. WALP to count how many times a particular number occurs in an array using 8086.

16. WALP to find out the square of the odd numbers from a given set of n numbers.

17. WALP to separate odd and even numbers from a given array without using DIV instruction

18. Write an Embedded C program to rotate stepper motor continuously in the clock wise direction for an angle of 180^{0} at 35 rpm and then in anti-clock wise direction for 5 complete rotations using 8051μ C.The speed of the rotation should be doubled for the remaining.

19. WALP to find out the number of occurrence of one's in a particular number using 8051 using LED's.

20. WALP to find the n terms of the sum of square series for a given value of n; $1^2+2^2+3^2+\dots+n^2$

- 21. WALP to find the n terms of the sum of cubes series for a given value of n; $1^3+2^3+3^3+\dots+n^3$
- 22. WALP to evaluate the series: 3+10+17+24+... up to n terms.

23.WALP to interchange two blocks of data.

24. A block of data with "n" entries is stored in memory locations from 2500H onwards, write a program to transfer the data bytes to locations from 3000H onwards in reverse order.

25. WALP to display the factorial of a number using 8051, the input is given at port1 and display the output at port2 using LED's.

26. WALP to add multi-byte numbers.

27. WALP to count how many times a particular number occurs in an array.

28.WALP to find out the average of a given set of numbers using 8086.29.WALP to display the results of two 8 bit numbers using ports.